Autonomous Robots
https://doi.org/10.1007/s10514-022-10068-3

®

Check for
updates

Locomotion generation for quadruped robots on challenging terrains
via quadratic programming

Xinyang Jiang' - Wanchao Chi' - Yu Zheng'® - Shenghao Zhang' - Yonggen Ling' . Jiafeng Xu' .

Zhengyou Zhang'

Received: 3 November 2021/ Accepted: 29 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

This paper proposes a locomotion generation method for quadruped robots, which first computes an optimal trajectory of
the robot’s center of mass (CoM) and then its whole-body motion through inverse kinematics. As the core component, the
computing of the CoM trajectory, which is parameterized as polynomials, is based on the robot’s centroidal dynamics and it is
observed that several terms in the centroidal dynamics are minor and can be omitted in the locomotion generation. Then, as a
basic form of the proposed method, the CoM trajectory optimization is written as a quadratic programming (QP) problem for
the case of given step sequences, timings and footholds. Furthermore, the uncertainty of the robot’s CoM, which is described
as a convex polyhedron around a nominal CoM position, and the reachability of the robot’s feet, which is approximated as
another convex polyhedron, can be added to the QP problem as linear inequality constraints. Ultimately, the planning of
step sequences, timings, and footholds is all incorporated, leading to a single mixed-integer quadratic programming problem.
Numerical and hardware experiments have been conducted and show that the proposed method can generate various walking
motions for a quadruped robot to travel over challenging terrains.

Keywords Locomotion generation - Footstep planning - Quadruped robot - Centroidal dynamics - Quadratic programming

List of symbols

. ¥ ny € NT Order of the polynomial representing x, y,
ieN Index of a foot of the robot . ¢
Nc e NT Number of feet/contacts or z coordinate of p,
¢ + ¢, € Rl Coefficients of the polynomial representing
meR Mass of the robot di ¢
e R? Contact force at contact i X, ¥, or z coordinate of p,
fie 3 ) c e R Total coefficients [¢! c}T, cI'”, where
n eR Contact normal at contact i
e R3 Positi ; tact i ny =ny+ny+n;+3
ri € 3 osttion ot contact , fr e R3Ne Total contact force at time f
pc R Position of the robot’s CoM 3
3 . v, €R Vertex h of a convex polyhedron centered
LeR Angular momentum of the robot about its at p
GO
R3Ne gON{ Cf T T T T S € R3Nc¢  Total contact force at sample time #;x when
£ € 003 O"Fa tcot‘_“ac f‘t’}flce [{: LS 2 Il the robot’s CoM is at v},
0€ R3 3) Brlgn a 10nl 0 le r(')t otfsthase bot’s b N; € R3 Number of candidate footholds for foot i
@ ocy anguiar veloctly o the robor s base rij € R3 Candidate foothold j for foot i
Ty e R’ Body inertia tensor of the robot’s base ’ . . . . ..
3 . o , Bijk €{0,1}  Binary variable associated with r;; to indi-
Pgo €R Initial position of the robot’s CoM for a . . .
t' . cate its selection at time 7
3 motion segmen , . fijk € R3 Contact force at r;; at time #;
p,eR Change of the robot’s CoM position over
time ¢ during a motion segment
Bd Yu Zheng 1 Introduction

petezheng @tencent.com

Tencent Robotics X, Tencent Binhai Building, Shenzhen,

Guangdong Province, China

Published online: 18 October 2022

Quadruped robots possess a balanced locomotion ability and
have gained significant attention during the past decade.
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Compared with bipedal robots, they have more legs to form
larger support areas in different shapes as needed in various
locomotion scenarios, and each leg has a simpler structure
and lighter weight. All of these facilitate the realization of
stable and agile locomotion. Compared with wheeled robots,
quadruped robots can traverse a wider diversity of terrains.
Thanks to the persistent work by numerous researchers and
engineers, several outstanding quadruped robots have been
developed, such as BigDog, WildCat and Spot series from
Boston Dynamics (Raibert et al., 2008), HyQ series from
IIT (Semini et al., 2011), ANYmal from ETH (Hutter et al.,
2016), Cheetah series from MIT (Bledt et al., 2018), Jueying
series from DeepRobotics (2017), and Laikago and Aliengo
from Unitree (2017).

With many legs and degrees of freedom (DoFs) as well
as factors to be considered such as equilibrium conditions,
footstep sequences, contact constraints, joint limits, and etc.,
locomotion generation for quadruped robots is a core but hard
problem aimed at computing appropriate motion trajectories
for every DoF of robots to traverse over various terrains. In
this paper, following existing pioneering work, we propose a
locomotion generation algorithm for quadruped robots based
on quadratic programming (QP) and show its extensions to
cover the uncertainty of the robot’s center of mass (CoM)
and the planning of step sequences, timings, and footholds.
A literature review is given first as follows.

1.1 Related work

Both as floating-base robots, quadruped and bipedal robots
have many similarities, such as dynamic models, equilib-
rium conditions, and contact constraints, so their locomotion
generation methods often inspire or can be extended to each
other. In the following literature review, therefore, we do not
distinguish the types of robots that a method is applicable to
or originally designed for and focus on the underlying math-
ematics and physics inherent in the methods. In addition,
the whole-body motion of a legged robot is often obtained
through two successive steps, namely computing the motion
trajectories of its floating base or CoM and feet followed by
computing all joint trajectories through inverse kinematics.
Our review is focused on the first step, which is the core of
locomotion generation.

Early methods for locomotion generation often use a
simplified dynamics model, typically an inverted pendulum
or a cart-table model, to relate the motion of the robot’s
CoM to the support and combine a relatively simple sta-
bility criterion, usually based on the zero moment point
(ZMP) (Vukobratovi¢ & Borovac, 2004) or the capture point
(CP) (Koolen et al., 2012; Pratt et al., 2006, 2012), to ensure
the feasibility of the generated motion. The ZMP-based sta-
bility criterion requires the ZMP of a legged robot to always
lie in the support area formed by the feet contacting the
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ground, by which a pair of physically consistent ZMP and
CoM trajectories to follow given footholds can be com-
puted (Kajita et al., 2003; Kanehiro et al., 2008; Nagasaka et
al., 1999; Sugihara, 2008). The ZMP can also be used to ver-
ify the stability of legged robots in following planned body
trajectories (Huang et al., 2001; Kuffner et al., 2002; Neo et
al., 2007; Park & Youm, 2007) or as constraints in generating
CoM trajectories (Bellicoso et al., 2017, 2018; Caron et al.,
2017; Kalakrishnan et al., 2011; Mastalli et al., 2017, 2020b;
Winkler et al., 2015, 2017a,b). On the contrary, CP-based
methods generate foothold sequences for a robot to follow a
desired CoM motion (Gehring et al., 2013) or recover from
a push (Barasuol et al., 2013; Pratt et al., 2006, 2012).

Recently, the computing of the robot’s CoM trajectory,
with known or unknown step sequences, timings, and/or
footholds, has been written as various optimization problems
with different choices of variables, constraints, and objec-
tive functions and it is also known as trajectory optimization
(TO). As the state of the art, we summarize such methods
from three perspectives.

1.1.1 Trajectory representation

The CoM trajectory can be represented as polynomials in
time (Bellicoso et al., 2017, 2018; Fernbach et al., 2018;
Kalakrishnan et al., 2011; Mordatch et al., 2012; Qiu et
al., 2011; Tonneau et al., 2018; Winkler et al., 2014, 2015,
2017a,b, 2018; Zheng et al., 2019) or states containing posi-
tions, velocities, accelerations, and/or even jerks of the CoM
at discrete time knots (Aceituno-Cabezas et al., 2017, 2018;
Carpentier et al., 2016; Dai & Tedrake, 2016; Kuindersma et
al., 2016; Orsolino et al., 2018; Perrin et al., 2015; Ponton
et al., 2016, 2018). In the former representation, the coef-
ficients (Bellicoso et al., 2017, 2018; Kalakrishnan et al.,
2011; Mordatch et al., 2012; Qiu et al., 2011; Winkler et
al., 2017a,b, 2018) or control points (Fernbach et al., 2018;
Tonneau et al., 2018; Zheng et al., 2019) of polynomials are
the primary variables to be determined in TO and the conti-
nuity is often imposed as linear equality constraints on the
polynomials describing two neighboring motion segments
at their conjunction. In the latter one, the states as well as
other values, such as contact forces, are unknowns and time
integration constraints relating the states at every pair of
successive time knots need be added, which are linear equal-
ity constraints if time knots or motion phase durations are
given (Aceituno-Cabezas et al., 2017, 2018; Carpentier et al.,
2016; Dai & Tedrake, 2016; Perrin et al., 2015; Ponton et al.,
2016, 2018) or nonlinear if they are also unknowns (Kuin-
dersma et al., 2016; Orsolino et al., 2018) since the time
integration requires the multiplication of velocity, accelera-
tion, and jerk by time.
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1.1.2 Trajectory feasibility

To check if a motion is physically feasible for a robot, one
may reduce the robot to simple models, such as inverted
pendulums, based on which the feasibility check can be
straightforward. However, simple models do not truly reflect
the motion capability of a robot with multiple joints. Instead,
one may use the robot’s whole-body dynamics (Neunert et
al., 2017, 2018; Mastalli et al., 2020a), but it involves more
complex computation and can be costly to be incorporated
into a TO problem. State-of-the-art methods mostly use the
centroidal dynamics of robots with consideration of contact
force constraints (Aceituno-Cabezas et al., 2017, 2018; Car-
pentier et al., 2016; Dai & Tedrake, 2016; Fernbach et al.,
2018; Grandia et al., 2019; Kuindersma et al., 2016; Ponton
etal., 2016, 2018; Qiuetal.,2011; Tonneau et al., 2018; Win-
kler et al., 2018; Zheng et al., 2019). The robot’s centroidal
dynamics relates the translational motion of the CoM and the
overall angular momentum change of the robot to the con-
tact forces and the criterion requires that the gravito-inertia
wrench of the robot during a motion should be counter-
balanced by feasible contact forces (Bretl & Lall, 2008;
Hirukawa et al., 2006; Saida et al., 2003). The contact force
constraint typically includes the friction constraint, which
defines a circular cone or often is approximated by a pyra-
midal cone limiting the direction of contact force. In some
TO methods, contact forces are considered as unknowns and
the friction constraint is added as linear or conic inequal-
ity constraints (Grandia et al., 2019; Ponton et al., 2016,
2018; Winkler et al., 2018) or each contact force is writ-
ten as a nonnegative combination of edges of the pyramidal
friction cone (Aceituno-Cabezas et al., 2018; Kuindersma et
al., 2016). In the case that the contact between a robot’s link
and the environment is a face rather than a point, such as
the sole of a humanoid robot, the resultant wrench (i.e., con-
catenation of the resultant force and moment) applied to the
link can be treated as being generated by the contact forces
at the vertices of the face and the set of feasible wrenches
subject to the friction constraint form a 6-D convex cone
known as the contact wrench cone for the link (Caron et
al., 2015a,b; Carpentier et al., 2016; Hirai, 1991; Zheng et
al., 2019). In this case, there is an equivalent formulation
to limit the 3-D force component and the normal moment
component of the resultant wrench by the friction constraint
and confine the center of pressure in the contact area of the
link (Ponton et al., 2016, 2018). Another way to incorpo-
rate the friction constraint is to convert all contact forces
to the resultant wrench to counterbalance the gravito-inertia
wrench. All such resultant wrenches that can be generated by
feasible contact forces also constitute a 6-D cone known as
the contact wrench cone for the robot (Aceituno-Cabezas et
al., 2017; Dai & Tedrake, 2016; Fernbach et al., 2018; Qiu et
al., 2011; Tonneau et al., 2018; Wieber, 2006; Zheng et al.,

2019). Linear representations, edge or facet, of the contact
wrench cone for a link or the robot could be calculated and
used as linear constraints in the TO (Hirai, 1991; Zheng et
al., 2019), but the inconvenience is that generally there is no
analytical expression of the linear representations for an arbi-
trary contact area and pre-calculating the constraints may not
always be possible in practice. Beyond the friction constraint,
some work further takes into account the leg configuration
and joint toque limits and formulates the actuation wrench
polytope replacing the contact wrench cone (Orsolino et al.,
2018). However, its computation is even more complex and
can be done only once at the beginning of every TO cycle with
a constant leg Jacobian under the quasi-static condition. A
more easily-computable motion constraint considering both
the robot’s static stability and the joint torque limits has also
been proposed and added online to the TO (Orsolino et al.,
2020).

To reduce the complexity of TO, some methods consider
only the linear motion of the CoM (Caron & Kheddar, 2016;
Perrin et al., 2015; Zheng et al., 2010) and neglect the angu-
lar momentum, which involves a nonlinear non-convex term
of the CoM motion. With zero angular momentum, the fea-
sible CoM acceleration set can be derived from the contact
wrench cone for any given CoM position (Caron & Kheddar,
2016). Furthermore, some use a simplified dynamics model
and require the ZMP to fall in the support polygon (Belli-
coso et al., 2017, 2018; Caron et al., 2017; Kalakrishnan et
al., 2011; Mastalli et al., 2017, 2020b; Winkler et al., 2015,
2017a,b) or even the static equilibrium criterion that requires
just the vertical projection of the CoM to be within the sup-
port polygon (Fankhauser et al., 2018). Some methods use a
spring-damper contact model such that the contact forces are
no longer treated as independent unknown variables (Neunert
etal.,2017), or write the contact force as the multiplication of
the vector from the contact point to the CoM by a scalar (Per-
rin et al., 2015). To avoid the non-convexity induced by the
centroidal angular momentum, following the decomposition
of the angular momentum into the sum of a convex func-
tion and a concave function (Herzog et al., 2016), convex
relaxations are further proposed to reformulate the angular
momentum as convex quadratic inequality constraints for the
TO (Ponton et al., 2016, 2018).

In addition to dynamics, some work also considers the
leg’s kinematics in the TO. Since computing joint angles
for desired CoM and foot positions by inverse kinemat-
ics involves nonlinear operations, which are not suited for
being directly added to the TO, the existing work checks if
a foothold is within an allowable region instead. The region
can be defined to have a simple geometric shape, such as
a rectangle (Winkler et al., 2017b) or a polygon (Bellicoso
et al., 2018) centered at a nominal foothold on the ground,
and described as a set of linear inequality constraints on the
CoM and foot positions. Instead of describing reachable foot
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positions with respect to the CoM, a reachable CoM region
with respect to each foothold can be described as a polytope
and the overall reachable CoM region can be described as
the intersection of such polytopes for all feet (Fernbach et al.,
2018; Tonneau et al., 2018). Some work defines the reachable
foothold to be within a certain distance from the CoM (Ponton
et al., 2016), the hip (Fankhauser et al., 2018), or a nomi-
nal foot position (Winkler et al., 2017a), which introduces
nonlinear constraints on the CoM and foot positions. To con-
sider the yaw of the robot’s feet or base, other work defines
the region as the intersection of two circles aligned with the
foot (Deits & Tedrake, 2014; Kuindersma et al., 2016) or the
biggest square inscribed in the leg’s workspace aligned with
the robot’s body (Aceituno-Cabezas et al., 2017) and approx-
imates the trigonometric functions of yaw by piecewise linear
segments with binary variables determining which segment
to come into play in the TO (Deits & Tedrake, 2014), by
which the final approximated reachability constraints can be
convex quadratic or linear.

1.1.3 Trajectory optimization

Given step sequences, timings, and footholds, by writing
physical feasibility and kinematic reachability as linear con-
straints, TO can be formulated as QP problems (Dai &
Tedrake, 2016; Bellicoso et al., 2017; Fernbach et al., 2018;
Kalakrishnan et al., 2011; Qiu et al., 2011; Tonneau et al.,
2018; Winkler et al., 2014, 2015), in which the objective
functions are often defined to minimize the velocities, accel-
erations, and/or jerks of the CoM over the trajectory as well
as its deviations from a regularized motion and final states
or to maximize the contact wrench cone margin. To obtain a
natural walking motion, the centroidal angular momentum,
which is originally nonlinear and non-convex with the CoM
motion, can be minimized by minimizing a convex upper
bound of its L | norm, which can be further converted to linear
and second-order conic constraints in the case of polytopic
and ellipsoidal admissible CoM regions, respectively (Dai
& Tedrake, 2016). In the latter case, TO can be written as
a second-order conic programming (SOCP) problem, versus
a QP problem in the former case (Dai & Tedrake, 2016). In
general, the QP and SOCP problems can readily be solved by
off-the-shelf solvers (Di Gaspero, 1998; Ferreau et al., 2014;
GUROBI, 2014; MOSEK, 2014).

By relaxing the nonlinear centroidal momentum dynamics
into convex quadratic constraints, TO can be written as a con-
vex quadratically-constrained QP (QCQP) problem (Ponton
et al., 2016). Furthermore, allowing variable time discretiza-
tion introduces some bilinear constraints, which can similarly
be approximated by convex quadratic constraints, and the
time-optimized trajectory can still be computed as con-
vex QCQP problems (Ponton et al., 2018). In addition,
the selection of step sequences and footholds and the yaw
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motion of the robot’s body and feet can be described by
linear/quadratic equalities or inequalities with binary vari-
ables, and they can be determined together with the CoM
trajectory in a single mixed-integer QP (MIQP) or QCQP
(MIQCQP) problem (Deits & Tedrake, 2014; Ponton et
al., 2016; Aceituno-Cabezas et al., 2017, 2018). Though
there are off-the-shelf solvers for convex QCQP, MIQP, and
MIQCQP problems (GLPK, 2000; CPLEX, 2010; MOSEK,
2014; GUROBI, 2014), these problems are more complex
than QP and start to be less appropriate for online motion
generation.

In fact, while many constraints and objective terms are
nonlinear without approximation, TO can be written as non-
linear programming (NLP) problems. When time intervals
or motion phase durations are taken to be variables like the
robot’s states at time knots, the time integration constraints
are nonlinear equality constraints (Kuindersma et al., 2016;
Mastalli et al., 2017, 2020b; Winkler et al., 2018; Orsolino
et al., 2018). In the case of variable footholds (Winkler et al.,
2017a,b) or CoM height (Bellicoso et al., 2018), the ZMP-
based stability condition gives a set of nonlinear inequality
constraints. Some work writes the reachability constraint as
a nonlinear function of foot positions and the position and
orientation of the robot’s base, where considering the robot’s
orientation as variables without any linearization introduces
additional nonlinearity (Fankhauser et al., 2018). The objec-
tive function can also be nonlinear due to the uses of inverse
dynamics to check the feasibility of contact forces and joint
torques (Mordatch et al., 2012), a nonlinear expression of
contact forces (Perrin et al., 2015), or nonlinear barrier func-
tions to absorb the robot’s kinematic, dynamic, and/or contact
force constraints (Carpentier et al., 2016; Grandia et al.,
2019). Nonlinear formulations can more precisely model the
TO problem or generate a wider variety of motions but signif-
icantly increase the level of difficulty in solving the resulting
NLP problem, which prevents them from online uses. Avail-
able NLP solvers include Ipopt (Wiechter & Biegler, 2006)
and SNOPT (Gill et al., 2005). In addition, TO can be solved
as a multi-level optimization problem (Farshidian et al.,
2017).

1.2 Our work

After thoroughly reviewing the existing work, we present
some different formulations of TO for quadruped robots in
this paper. The core part of our work is to compute an optimal
CoM trajectory along given or together with step sequences,
timings, and footholds, since the whole-body motion can be
easily calculated through inverse kinematics once the tra-
jectories of the CoM and steps are determined. Similarly to
some of the state-of-the-art methods (Tonneau et al., 2018;
Fernbach et al., 2018), we describe the robot’s motion based
on its centroidal dynamics and write its CoM trajectory as



Autonomous Robots

polynomials with their coefficients to be optimized. The con-
tributions of this paper include

e We discover that the quadratic terms of the polynomial’s
coefficients yielded by substituting the polynomials into
the robot’s centroidal dynamics are negligible for a rea-
sonable motion period (e.g., several steps) of a quadruped
robot. Also, we choose to determine the robot’s ori-
entation heuristically from pre-specified footholds or
pre-planned walking paths such that the angular motion
generation is decoupled from the linear motion of the
CoM. In this way, the CoM trajectory can be computed
as a QP problem for given step sequences, timings, and
footholds, which can be easily and efficiently solved
online. Compared with the existing work optimizing
the CoM and angular motions simultaneously as convex
QCQP or MIQCQP problems (Deits & Tedrake, 2014;
Ponton et al., 2016, 2018) or completely omitting the
angular motion (Caron & Kheddar, 2016; Perrin et al.,
2015), this proposed approach gives a compromise con-
sidering the angular motion while keeping the TO as
simple as QP.

e Considering the difficulty in obtaining the accurate posi-
tion of the robot’s CoM, we allow the CoM to be
anywhere in a convex polyhedron at a nominal position
and incorporate it as linear constraints into the QP prob-
lem. By doing this, the generated motion is feasible for
the robot wherever its actual CoM is as long as it is inside
the polyhedron. This approach to generating robust CoM
trajectories is different from the work (Caron & Khed-
dar, 2016), which restricts the entire CoM trajectory in a
pre-specified convex polyhedron and requires the CoM
acceleration at any time to be feasible with respect to
given footholds for any CoM position in the polyhedron.

e To embed the automatic selection of footholds, we
describe candidate footholds for each foot by a set of
discrete points on the ground and assign each point a
binary variable to indicate if it is selected as the next
foothold. Instead of using a contact region, which leads to
quadratic constraints and MIQCQP problems (Aceituno-
Cabezas et al., 2017, 2018), we write the selection of
footholds from discrete points as linear constraints and
reformulate the CoM trajectory optimization as an MIQP
problem. Furthermore, we divide the motion period into
small time intervals and use binary variables to indicate
if a foot is in the air or on the ground during every inter-
val. By doing this, we write another MIQP problem to
automatically determine the step sequences and timings
with the CoM trajectory.

e We conduct a number of experiments to test the proposed
method and its extensions together with a vision system
and a motion controller on a real quadruped robot (Fig. 1),
on which all of them work seamlessly such that the robot

can reliably execute generated motions and traverse chal-
lenging terrains.

The rest of this paper is organized as follows. Section?2
introduces the basic dynamics of quadruped robots. The
proposed locomotion generation method and its extensions
are presented in Sect.3 followed by experimental results in
Sect.4. Section5 concludes this paper and discusses some
future work.

2 Robot dynamics

In this section, we introduce the dynamics based on which
the motion controller and generator are derived for our
quadruped robot, as shown in Fig. 1. It has been well-known
that the whole-body motion of a floating-base robot including
quadruped robots can be described as (Wieber, 20006)

Mi+c=STt+Jf, (1)

where M € RN6*NG s the inertia matrix, § € RV is the
generalized acceleration, ¢ € RN6 is the sum of Coriolis,
centrifugal, and gravity forces, T € RV consists of all joint
torques, J = [JIT J2T JITVC]T € R3NcxNG g the
Jacobian of contact points, f = [flT sz e fﬁc]T €
R3Nc consists of all contact forces, N = Ny + 6 is the
number of DoFs of the robot including six unactuated DoFs
of its floating base, N is the number of joints, and N¢ is
the number of contact points that the robot makes with the
environment. Since the robot’s base is unactuated, the first six
rows of ST are zero and § = [0y, x6 In,xn,] € RN/ NG,

Each contact force f; € R? should satisfy the friction
constraint, which originally defines a circular cone but can
be replaced conservatively with a pyramidal cone described
by four linear inequalities as

Nl f; <0, )

where N; = —[uin; —o; pin;+o0; pin; —t; uin; +t;] €
R3x4, Wi is the coefficient of friction, and n;, 0;, t; € R3 are
the unit normal and two orthogonal tangent vectors at contact
i described with respect to the global frame, as depicted in
Fig. 1. Each inequality in (2) defines a face of the pyramidal
cone while each column of N; is the outward normal of a
face. One may also impose a constraint on the contact force
magnitude as

fF=nl fi< Y, )

where fl.L and fl.U are the nonnegative lower and upper
bounds on the normal contact force, respectively.

@ Springer
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Fig.1 Our torque-controlled quadruped robot JAMOCA. Fpse is a coor-
dinate frame attached to the robot’s CoM and pg; is its position with
respect to the global frame Fgjobar. ; is the contact position of leg i on
the ground in frame Fglobal and n;, 0;, and ¢; are normal and tangent
vectors at the contact. F; is a fixed local frame at the first joint of
leg i with a constant offset p;; to frame Fpase. The while polyhedron
represents a presumptive region of the CoM deviation from its nominal
position in the robot model

From the first six rows of (1) we can derive the centroidal
dynamics of the robot as (Wieber, 2006)

Nc

mpg -8 | _N~[Im3] , _ )
[mi’c(ﬁc—g)Jrﬁ]_;[ Y ]fz—Gf, €5

where m is the total mass of the robot, p; € R* and r; € R?
are the positions of the robot’s CoM and the i-th contact with
respect to the global frame, respectively, and A denotes the
skew-symmetric matrix to calculate the cross product, L is
the angular momentum of the robot about its CoM, and the

matrix G — | 13x3 I3x3 -+ I3x3i| € RO3Nc_ The upper

Pl Py - P
half of (4) is actually Newton’s law describing the motion
of the robot’s CoM, while the lower half is Euler’s equation
relating the overall angular momentum change of the robot
to the moment applied about its CoM.

The angular momentum £ can be written as

NL
L= Z((pj —pG) X mjﬁj +Rjijj) ~ RoZowo,
=0

where p; € R? and R j € SO(3) are the position and ori-
entation of the local coordinate frame of link j of the robot
with respect to the global frame, m; is the mass of link j,
Z; and w; are the inertia tensor and the angular velocity of
link j with respect to its local coordinate frame, respectively,
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and Ny, is the number of links. Here, let j = O represent the
base and j > 0 the other links of the robot. For a quadruped
robot, legs are often made as massless as possible such that
m; ~ 0for j > 0and py ~ pg. Hence, L is reduced to the
angular momentum of the robot’s base. Since Rowoy = 0, we
can derive the time derivative of L as

L~ RyTooo + RoZowo = Tyoy — (Towy) x @, (5)

where Ig = RoIoRg is the instantaneous inertia tensor
of the robot’s base relative to the global frame, and wg =
Rywo and d)g = Rowy are the spatial angular velocity and
acceleration of the base, respectively.

3 Locomotion generator

The whole control architecture of our quadruped robot is
depicted in Fig. 2. Taking a reference motion generated by the
motion generator and the current state of the robot acquired
by its on-board sensors as inputs, the motion controller deter-
mines the required joint torques for the robot to reproduce the
reference motion. Since the motion controller implemented
on our robot is a traditional one, we briefly explain it in the
appendix for the completeness of this paper. In this section,
we focus on the locomotion generator based on a new sim-
plification of centroidal dynamics. We first present a basic
form aimed at online computing the robot’s CoM trajectory
for given footholds and timings, while the robot’s orientation
is determined heuristically from given footholds or walking
direction. Further extensions to taking into account the uncer-
tainty of the robot’s CoM and the variety of walking patterns
in terms of step sequences, timings, and footholds will also
be discussed.

3.1 Simplification of the centroidal dynamics

Let pgo € R? be the initial position of the robot’s CoM at
the beginning of a motion segment and p, € R3 the change
of the CoM position from pg( over time ¢. The value psq
will be updated for but remain constant during every new
motion segment to be generated, while p,, starting from zero,
describes the motion trajectory of the CoM and needs to be
determined. Then, we can write p as

PG = Pco+ P;- Q)
Substituting (6) into (4) yields

Gf =Hyx; — w. + wy, 7
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Fig.2 Control architecture of our quadruped robot. Based on the sen-
sor data including vision, inertia measurement unit (IMU), joint encoder
and torque measurement, the position p; and velocity p of the robot’s
CoM and the orientation R and angular velocity g of its floating base
as well as its current contacts r; with the environment and candidate
footholds are estimated and detected. The reference angular motion
R{)ef of the robot’s base is determined heuristically from candidate

footholds, and so can be the reference footholds r?ef in the CoM trajec-

tory optimization. Alternatively, the footholds as well as step sequences

where

Hy = |:03XA3 m{3X3:| e RO*0 x, = |:p,:| € RO,
mg mpgo t

=[ "8 } € RS, w,:[ofxl } € RS.
mpgog — L mp;P;

In (7), the first term H ¢x; on the right-hand side of the equal
sign is linear to p, and p,, where the matrix Hy is con-
stant. When the angular motion R of the robot over time is
predefined (see the next subsection), the second term w, is
time-varying but known.

The last term w; in (7) is of most interest and key to the
validation of the proposed method, so we discuss it in more
detail here. First of all, we shall clarify that p, represents
only the change of the CoM position from the initial position
Pgo and starts from zero for every motion segment to be
generated. Thus, for a motion segment where p, is notbig, the
only nonzero component in w;, namely p, p,, is insignificant
even if the acceleration of the CoM, namely p,, is large.
Moreover, p g, Will be updated to the final CoM position in
the present motion segment and p, will restart from zero for
generating the next motion segment. Hence, the effect of p,
on the robot’s centroidal dynamics will mostly be counted in
the term Hox; in (7) and p, will not be accumulated to the
next motion segment, which leaves the additional dynamic
effect caused by p, p, negligible, especially during a short
motion segment.

To further understand the dynamic effect of p, p, in (7),
we decompose p, = p;” + p?, where p;” = [py Dyt 017,
pi =10 0 p,17, and py, pys, and p,, are the x, y, and
z coordinates of p,, respectively. We decompose p, in the
same way to p,” and p?. Then, p,p, can be expanded as

and timings can be optimized together with the CoM trajectory prgf.
Finally, reference joint trajectories ™! are calculated through inverse
kinematics with the reference footholds and CoM and orientation tra-
jectories. Based on the robot’s centroidal dynamics, the optimal contact
forces for realizing the reference motion are calculated and converted
to the required joint torque 7', which is added to the joint torque 7'
determined by a joint PD tracking controller to form the final control
command 7 sent to the robot

bb, =P b + b BT+ i b+ b bi ®)

here p;” p;” gives a torque about the z axis, p;” pf + p: p;”
gives toques about the x and y axes, and p; p; = 0. First,
generating the z-direction torque required by p;” p;’ needs
the help of tangential contact forces. If p;” p;” is in the same
direction as the total required torque about z (i.e., the last row
of the entire right-hand side of (7)), omitting it in the loco-
motion generator will leave a risk to the motion controller
to face a greater required torque for producing the generated
motion, in which additional tangential contact forces may
be needed at the risk of bringing the contact forces to the
boundary of the friction cone. We presume that the magni-
tude of p;” p;” is usually not significant and such a risk is
very low in real locomotion scenarios. If p;” p;” is opposite
to the total required torque, by omitting it we then consider
an exaggerated torque in locomotion generation and the gen-
erated motion will be easier for tracking control. Moreover,
the z-direction motion of the robot during locomotion is often
small and steady, which implies that p7 and p? are negligi-
ble, and so are p;” p? and p’ p;” . Therefore, we exclude the
term w; in (7) from locomotion generation and its real effect
will be verified later in experiments (see Sect.4.2.2).

Remark 1 The method proposed in the work (Fernbach et
al., 2018) cleverly expresses the CoM trajectory as a Bezier
curve with only one control point such that the quadratic term
D, P, automatically disappears without causing any loss in
dynamics. Nevertheless, the use of a single free control point
may limit the freedom to optimize the CoM trajectory. By
contrast, our method allows more free parameters to tune
the CoM trajectory but it may not be suited for generating
too long motion segments, in which the effect of p, p, could
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increase to a nonnegligible level. By a number of numeri-
cal tests as reported in Sect.4.2.2, we ascertain that p, p, is
indeed insignificant for motion segments in which every leg
takes one or two steps or the robot makes one or two walking
cycles. We think that generating a long-distance reference
motion at once might not be necessary in practice since the
robot’s perception of terrain can be limited and not able to
provide enough information for long-term planning as in our
testing scenario (see Sect.4.1). Also, a robot may have little
chance to completely execute a long reference motion due
to the deviation accumulated during execution or an envi-
ronmental change, for which a re-planning is often needed.
Hence, we seek an economic and efficient method to gener-
ate medium-length motions, with which a robot can quickly
plan or re-plan its motion to adapt to the environment or its
own state change.

3.2 Determination of the angular motion

It is hard to directly parameterize and optimize the angular
motion of a robot like its CoM in the TO. This is due to
the fact that the time derivative £ of the angular momentum
given by (5) involves a cross product and the calculation of
the robot’s orientation Ry involves trigonometric functions,
which induce nonlinear terms of angular parameters in the
centroidal dynamics and kinematics constraints. One may
use advanced techniques to linearize or relax the nonlinear
terms (Deits & Tedrake, 2014; Herzog et al., 2016; Ponton
et al., 2016, 2018) but would end up with a more complex
optimization problem, such as QCQP or MIQCQP, than QP.

On one hand, simultaneously optimizing the CoM and
angular motions of a robot requires a significant computa-
tional burden. On the other hand, a robot usually does not
require a severe change in its orientation, especially during a
short motion segment. As a compromise in this work, we use
a heuristics to determine the robot’s final orientation based
on its footholds on the ground at the end of a motion segment
to be generated, say aligning it to the principal axes of the
support polygon (Mastalli et al., 2020b), and then interpo-
late the angular motion between the final orientation and the
initial, which is the final orientation in the previous motion
segment. In this way, the angular motion can be determined
in advance such that Ry and £ are known at any time for the
TO once the footholds and timings are given. Also, one may
take the robot’s orientation to follow the walking direction
determined by a high-level path planner if there is any. With
the orientation being pre-determined, the centroidal dynam-
ics model is actually reduced to a single point mass model
to be used in the TO. Compared with some of the existing
work (Perrin et al., 2015; Caron & Kheddar, 2016) assuming
zero angular momentum, this compromise allows us to con-
sider the angular motion to some extent while keeping the
TO problem as a QP problem.
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3.3 Representation of the CoM trajectory

We describe each coordinate of p, by a polynomial such that
P, can be written as

Ty  Oixny+1) Oixn+1) | | €x
Ottty Ty Oixuany | |6y | =Te, (9
01><(nx+1) 01><(ny—i-1) T, c;

P =

where T, = [1 ¢ "] € RIX0FD el = [cy0 cht

Cyn,] € R"+1 n, is the order of the adopted poly-
nomial, * represents x, y, and z coordinates of p,, and
c= [cg cg cZT]T. Differentiating (9) twice, we derive the
acceleration of the CoM as

p, =Tec. (10
Substituting (9) and (10) into (7) and omitting w;, we obtain
Gf=Hc—w,, (1D

where H = Ho[T7T 7717 e ROx(xtnytn:+3)

Here, we take a specific walking pattern to demonstrate
how to determine the value of pgq and the initial and final
values of p,, p,, and p,, but this is by no means to limit
the application scope of the proposed method, which in fact
can be applied to different walking patterns. A full cycle of
the chosen sample walking pattern comprises the following
sequence of motion phases:

e Right-half walking cycle:

(a) Four-leg support (45);

(b) Hind-right leg swing (HR);
(c) Front-right leg swing (FR);
(d) 4S;

e Left-half walking cycle:

(e) 4S;
(f) Hind-left leg swing (HL);
(g) Front-left leg swing (FL);
(h) 4S.

In short, the robot in turn moves its HR, FR, HL,, and FL legs
and has a 4 S phase between the right and left half walking
cycles. The time duration of each phase is also assigned, as
depicted in Fig.3. Let riif , rit%, riji . rijk. and r%‘td, r%‘f{i,
rf{“f, rfﬁg be the footholds of the robot at the start and end
of a full walking cycle, respectively. Then, the centroids of
footholds at the start and end of a right-half, left-half, or full

walking cycle can be calculated as



Autonomous Robots

— For the right-half walking cycle:

S — (psStr
{ ctr — (r

end __ str
rar = (Fgp

str +rstr
end +rstr

Str )/4
end)/4

— For the left-half walking cycle:

{ ité _ (rstr end + rstr end)/4
g?rd (rend end + rend end)/4
— For the full walking cycle:
{ ztt; _ (rstr itr + rstr str )/4
g{}d (rend end 4 rend end)/4

Whenever we generate the robot’s motion for a half or full
walking cycle, psq is taken to be the final position of the
CoM in the previous planned motion segment or the initial
CoM position if the robot just starts to walk. The initial value
of the CoM position change p, during any motion segment
is simply zero and its expected final value, denoted by p"

end’
can be set to the change of centroid of footholds, namely

retd — ST The initial values of p, and p,, denoted by pref
and p'<', are their final values in the previous motion segment

or zero at the beginning of walking. The expected final value
pgflfd of p, can be equal to (r‘é{‘rd — r3%) /tiotal, Where fotal
is the time duration of the current motion segment, and the
final value pgflfd of p, can be just zero. In this way, the whole

generated CoM trajectory is C>-continuous.
3.4 Formulation of the locomotion generator

To ensure the feasibility of a generated CoM trajectory, we
take K sample points along it, as depicted in Fig.3, and
require the existence of contact forces f, satisfying (2), (3),
and (11) at every point #;, where k = 1,2, ..., K. One may
take many sample points and evenly spread them along the
motion trajectory. However, the number K directly affects the
number of variables and constraints as well as the complexity
of the final QP problem. To keep it as simple as possible, we
set the sample points wherever mostly needed as

(1) Two sample points at the conjunction of two leg swing
phases with each belonging to one phase, like the two
between the HR and FR phases in Fig. 3. Since the con-
tacts in the two phases are different and do not contain
each other, the motion feasibility should be verified sep-
arately at the conjunction.

(2) One sample point at the conjunction with a 4 S phase and
associate it with the other phase, like the one between the
4SS and HR phases in Fig. 3. If a motion is feasible from
the other phase (no matter whether it is a leg swing or 4 S
phase), it must be feasible at the conjunction for the 4 S
phase with extra or same legs touching the ground.

CoM

HR FR FL
N _
tl It Tu]6l 1 i Tty time

N,

Right-half walking cycle Left-half walking cycle

Fig.3 Illustration of the CoM trajectory and sample points for checking
the existence of feasible contact forces. To have a robust trajectory
to the uncertainty of the actual CoM position, we further require the
trajectory to be feasible for the CoM lying anywhere in a predefined
region (depicted by black segments here or the white polyhedron in
Fig. 1) surrounding the nominal CoM position (depicted by colorful
markers)

(3) Uniform sample points during every motion phase. We
set one point in the middle of every phase in Fig.3 but
can use more for a long motion phase or a phase with
fewer supporting legs since such a motion phase is more
likely to be infeasible.

Combining the above formulations, we finally write the
computing of the CoM trajectory as the following QP prob-
lem, in which ¢ and all f;’s are unknowns:

min J, J| Ji
N grf+ len + tgt

subject to Gy f = Hye — wek
N fix <0
fE=nifi = 1Y
i=1,2,...,N¢c
k=1,2,...,K
Toc =0, Toc = p!, Toc = p=l.

12)

It should be noted that the matrix H and the vector w. in (11)
vary continuously along with the time. Hence, we denote
them at time #; by Hy and w. in (12). Depending on the
contact status and locations of the robot at time #;., however,
the contact normal n;, matrices G and N;, and the number
of contacts N¢ do not change all the time, though we still
distinguish them at different #;,’s with subscript k. The last line
in (12) forces the planned motion segment to continue with
the previous one, where p' and pr<’ are the CoM velocity
and acceleration at the end of the previous motion segment.
Here, the objective function of (12) consists of three terms.
The objective term Jgf is intended to penalize high contact
forces and defined as the weighted sum of f ,{ S forall k,

K
Jut =Y FIW S, (13)

k=1
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where W ;. € R3Nc>3Ne s 3 weight matrix. To shorten the
generated trajectory and restrain its oscillation, we define the
term Jie, in (12) as

K/
Jen=Y_ ApiWuApy, (14)
k'=1

where Ap =T (t)e—T (ty—1)c, Wy € R3*3 is a weight
matrix, and f, K’ = 1, ..., K’ are sample times over the tra-
jectory, which may not necessarily be the same as the sample
times #;’s for checking the motion feasibility. Here, one may
choose to penalize p;, = T (/)¢ instead of A Py to have a
similar effect. Lastly, Jig is defined as

St = Ap"W,Ap+ Ap" W, Ap+ APTW, AP,  (15)
where Ap = p — T(tow)e, Ap = plg — T (tow)e,
Ap = }):ﬁi — T (tioa)Cs W, W, W, e R3*3 are weight
matrices, and pgifd, pg‘:}d, and gflfd are the reference values of
P;, P;» and p, at the end of the generated trajectory, respec-
tively, as discussed in the previous subsection. Besides the
three terms, other quadratic terms can be added to the objec-
tive function if needed to reflect additional demands on the
generated trajectory.

In the above QP formulation, we require the initial CoM
position, velocity, and acceleration of the current motion seg-
ment to be exactly equal to the final of the previous segment
by the last line in (12). Nevertheless, the final CoM state of
the current segment is not restricted but made close to the
reference value through the objective term Jig defined by
(15). There are many variant formulations. For example, one
may add the requirement of reaching the reference final state
as linear equality constraints to the QP problem instead of as
an objective term. Also, the initial and/or final accelerations
could be completely free. We test several variant formula-
tions in Sect.4.2.2.

3.5 Extensions

Equation (12) provides a basic form of the locomotion gen-
erator. Hereinafter, we discuss some extensions.

3.5.1 Considering the CoM uncertainty

Practically, the robot’s CoM is not invariant with respect
to its body frame during locomotion since the legs are not
truly massless and their movements change the CoM position
of the robot. Moreover, because of the inevitable modeling
error, there is a difference between the CoM computed from
the robot’s model and the actual one. To consider the uncer-
tainty of the CoM in locomotion generation and enhance the
robustness of the generated motion, we take psq to be the
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nominal initial CoM position and assume that the actual ini-
tial CoM can be anywhere inside a convex polyhedron with
vertices v, h = 1,2, ..., Ny centered at p, as depicted
in Fig. 1. Then, we hope to have a trajectory, still determined
by the coefficient ¢, that is feasible for any point inside the
polyhedron as the actual CoM.

To do this, we first prove that a trajectory given by c is
feasible for any CoM position inside the polyhedron if it is
feasible for all the vertices vy,’s. Substituting v, for psq in
(11) and denoting by f'}, the corresponding contact forces in
this case, we obtain

Gfn,=Hpc—we, (16)

where H, and w,j, are the corresponding matrix and vector
to vy,. For any position p in the convex polyhedron, we can

write it as a convex combination of v, h = 1,2, ..., Ny,
ie.,
Ny
P=) hnvn, (17)
h=1

where A;, > 0 for all 4 and Z,Ilv:‘/l Ap = 1. Substituting p for
Pgo in (11), from (16) and (17) we can derive

Ny Ny
Hpc—we, =Y dp(Hpe—wen) =G Y dpfy.  (18)
h=1 h=1

where H , and w., are the corresponding matrix and vec-
tor to p. If we have a solution for ¢ such that (16) holds
for all v;,’s with all f,’s satisfying the force constraints (2)
and (3), from (18) it follows that the trajectory also works
for p since ZhN:V \Anf, as a convex combination of f,,
h=1,2,..., Ny is the required contact force for the robot
with its CoM at p to fulfill the generated motion and satisfies
the force constraints. In other words, a motion trajectory fea-
sible for the CoM at any of the vertices v, h = 1,2,..., Ny
will be feasible for any CoM position inside the convex poly-
hedron.

Therefore, combining (16) with (12), we derive another
QP formulation to compute such a robust CoM trajectory as

min Jort + Jlen + Jigt

e, fi's
subject to G fx = Hpi¢ — Wenk
Lm0
i =npfhic = f; (19)
=12,...,Ny

7 - ref -s ref

0620» TOc:pstr’ TOC:PSn..
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Remark 2 To have a robust CoM trajectory, Caron and Khed-
dar (2016) restricted the CoM trajectory within a convex
polyhedral tube and required the CoM acceleration along
the trajectory within the intersection of feasible CoM accel-
eration sets for the vertices of the tube. Since these vertices
are pre-arranged and fixed prior to the generation of the CoM
trajectory, the number of constraints can be smaller than that
in our case, where the polyhedron around the nominal CoM
moves along the generated trajectory, as depicted in Fig. 3,
and we would like the trajectory to be feasible no matter
where the CoM deviates to from the nominal position as
long as it is still inside the polyhedron. To do so, we have to
ensure the existence of feasible contact forces at every sample
point for each case that the CoM is at a vertex of the polyhe-
dron. It is noted that such a straightforward formulation (19)
induces Ny times as many variables and constraints. One
possible way to simplify the problem is to pre-compute the
contact wrench cone for given footholds (Hirai, 1991; Zheng
et al., 2019) and rewrite all the equilibrium and friction con-
straints as another set of linearly inequality constraints on
every Hpic — wcpi, while all the contact force variables can
be eliminated. Furthermore, we may enclose Hjxc — Wepk
forh = 1,2,..., Ny at every time k with a ball of esti-
mated radius § centered at Hyc — w.x computed using the
nominal CoM position. Then, instead of Hjrc — wepk’s, we
just require the whole ball to be inside the contact wrench
cone, which is equivalent to applying those linearly inequal-
ity constraints to only Hc — w. with § as a safety margin.
In this way, the curse of Ny will be completely eliminated.
In the future, we would explore more efficient ways to cover
this uncertainty as well as others, such as the errors in contact
force tracking, contact normals, and friction coefficients (Del
Prete et al., 2016).

3.5.2 Considering the locomotion variety

In the above discussion, the walking pattern including step
sequences, timings, and footholds is prespecified. Here, we
extend our method to the case where all of these are variable
to increase the variety of locomotion.

To facilitate the understanding of the following deriva-
tions, we first consider the case where only footholds need
to be determined along with the CoM trajectory and then
include the variability of step sequences and timings. Assume
that there are N; > 1 candidate footholds for foot i, denoted
byrij, j =1,2,..., N;, which together with the normal n;;
and tangent vectors o;; and #;; therein can be acquired by the
vision system of our robot. We write the selected foothold r;
as

N;
ri=Y_ Bijrij. (20)
j=1

where 8;; € {0, 1} and 27’21 Bij = 1. By using the binary
variables B;;’s and the constraint 27’21 Bij = 1, only one
of binary variables B;;, j = 1,2, ..., N; is 1, which implies
that the only corresponding candidate foothold is selected.
Also, let f; j be the contact force at r;;. Similar to (2), the
friction constraint on f;; can be written as

NTf, <0, 21

where Nij = —[uijnij — 0ij pijnij + 0ij pijnij —
tij wuijnij +t;;] € R3*4, Furthermore, we limit the nor-
mal component of f;; as

nlifi < 1V Bij- (22)

From (21) and (22) we have fij = 0if 8;; = 0. Hence, only
the contact force f;; at the selected foothold can be nonzero
and (7) can be rewritten as

Nc N

>3 Gijfij=He—w,. (23)

i=1j=1

where Gj = [I3x3 #;]T € RO,

While selecting appropriate footholds, we shall make sure

that every selected foothold is reachable by the robot. To do
this, instead of using an oversimplified region (Winkler et al.,
2017b; Bellicoso et al., 2018) or nonlinear functions (Pon-
ton et al., 2016; Fankhauser et al., 2018; Winkler et al.,
2017a) to describe the kinematic constraint, we approximate
the workspace of each robot’s leg as a convex polyhedron,
as depicted in Fig. 4. After representing the workspace with
discrete points and cutting off the upper non-convex part,
we compute the convex polyhedron by the expanding poly-
tope algorithm (Zheng & Yamane, 2015) with the points in
the lower part, which is the most useful portion of the leg’s
workspace for locomotion. The polyhedron is expressed in
a fixed local coordinate frame F; at the first joint of the leg
(see Fig. 1) as a set of linear inequalities with each inequality
representing a face of the polyhedron,
S/ xi <d;, 24)
where x; € R3 is the foot position in frame F;1, §; =
[s1 s2 . SL]ER?’XL,d,' =[d| d> . dL]T GRL,SI
and d; for/ = 1,2, ..., L are the unit normal of a face and
its distance from the origin of frame F;1, respectively, and L
is the number of faces. For legs with the same configuration,
we can define frames ;| in the same way such that §; and
d; are identical for them and need be calculated only once.
To check if a current or desired foot location r; in the global
frame is inside the workspace by (24), we convert r; into
frame F; as
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Fig.4 Convex approximation of the leg’s workspace of our quadruped
robot

x; = R}, (Rg(ri - Pg) — Pil) . (25)

where p;| € R3 and R;; € S O (3) are the position and
orientation of frame J;| with respect to frame Fpyee and are
both constant. Combining (6), (9), (24), and (25), we obtain
a set of linear inequality constraints on the CoM position and
footholds in the global frame as

Ajc+ Bir; <b;, (26)

where A; = —STRLRIT, B; = ST R, RY, and b;

d; +S R 1Pil +S R”R0 Pco- Substltutlng (2()) into (26)
we ﬁnally obtain the reachability constraint on the selected
footholds as

N;
Aic+ ) BijBirij <b:. (27)
j=1

Combining (21)—(23) and (27), therefore, we can simply
rewrite (19) as the following MIQP problem to take into
account the selection of footholds:

min Jort + Jlen + Jigt

e, fiji's.Bij's
subject to Zl_] Z i1 Gijk fijx = Hie — wer
ljkfl]k =0
fL:Bl] = lz;kft/k = fU.Bl]
Ajkc + By Z Z1 Bijrij < bik (28)
Z l]_l IBijG{Ovl}
,2 Nc
,2,. N
,2,...,K
=0, Toc =p

I

= ~.
I

ref _ soref
s> Toc = pstr'

Remark3 One may describe candidate footholds with a
region instead of discrete points and write it as a set of lin-
ear inequalities if the region is planar and convex (Deits
& Tedrake, 2014) or even a nonlinear continuous function
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Fig.5 Representation of foothold occupation during time intervals used
in the MIQP problem (29). Each row corresponds to a foothold and
each cell is assigned a binary variable with value “1” indicating that
the foothold is occupied for the time interval corresponding to the cell.
The light and dark colors represent the current and candidate footholds,
respectively

if the terrain surface is curved. In this case, however, the
contact position r; and associated contact force f; are both
unknown variables, which causes G f in (7), involving the
cross product of r; and f;, to be quadratic and the final
formulation to be a non-convex QCQP or even NLP prob-
lem. By contrast, the proposed discrete-point description of
candidate footholds enables us to rewrite (7) still in a linear
form as (23), where G;;’s are all known for given candidate
footholds and f;; can be turned on or off by the correspond-
ing binary variable B;; in terms of (21) and (22). Moreover,
the MIQP formulation (28) can be applied to any terrain with-
out any change no matter whether the terrain is even, uneven,
or rough. Such an MIQP problem (28) can be easily solved by
off-the-shelf solvers (GLPK, 2000; CPLEX, 2010; MOSEK,
2014; GUROBI, 2014).

To further allow variable step sequences and timings, we
divide the time line of the desired motion segment into small
intervals, as depicted in Fig. 5, which together with the can-
didate footholds on the vertical axis form a 2-D mesh. Each
cell of the mesh is associated with a binary variable g;jx and
Bijx = 1 means that foot i is on the ground at position r;;
during the k-th time interval. Here, j and k both start with 0
and r;o is the initial contact location for foot i. The binary
variables need to satisfy some conditions:

(a) Bijx = 1for Vi while j = k = 0: This means that foot i
is at r;o when the motion segment begins.

(b) Bijx = 0 for Vi while j = 0 and k = K: The purpose
of this condition is to force foot i to leave r;o and take a
step in the motion segment.

(¢) Bijk = Bijk+1 for Vi, k while j = 0: By this condition,
once B;j turns to 0 from 1, it will remain O for the rest
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(b)

Fig.6 Test of the proposed method on our quadruped robot. a Testing scenario consisting of platforms, staircases, and uneven piles. b Perceived
and reconstructed terrain during robot walking
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of the motion, which means that foot i will not step back
to its initial foothold once leaving.

(d) Bijk < Bijk+1 for Vi, k while j > 0: After foot i reaches
a new location, it will remain there for the rest of the
motion segment.

(e) Z?’;O Bijx < 1forVi, k: This reflects that foot i can exist
at only one location or be in the air at a time.

H K —Zj.v;O Zf:o Bijk = Ksi forVi, k: With condition e),
Zl,vl:o S8 Bijx is the total number of time intervals for

which foot i is on the ground. Then, K — Z?’;O S o Bijk
is the swing duration of foot i, which should have a lower
bound Kg; such that foot i has enough time to touch
down.

Incorporating all these conditions and the binary variables,
we can expand (28) as

min Jgrf + Jlen + tht

¢, fiji's.Bijk's

subject to ZNZCI Zjv':] Gijifijx = Hke — wek
NiTjkfijk =<0
FEBijk < n,'Tjkfijk < fYBijk
Aike + Bix Y00 Bijerij < bik (29)
Constraints a)-f), Bijr € {0, 1}
i=1,2,...,N¢
j=0,1,...,N;
k=0,1,..., K
Toc =0, Toc = piy, Toc = pl;.

Till now, the timings of lifting up and touching down of each
foot are determined by the binary variables f§;;x’s, and so is
the step sequence.

4 Experimental results

We have implemented the motion controller and generator
in C++ and conducted hardware and numerical experiments
to verify the effectiveness and performance of the proposed
motion generator in quadruped locomotion. The experimen-
tal results are reported as follows.

4.1 Experiment setup

Figure 1 shows the quadruped robot named JAMOCA used in
the experiment. The robot is based on a Jueying Pro robot
from DeepRobotics with its original vision system replaced
by an Azure Kinect camera. The robot is about 70kg and
equipped with a PC having an Intel Core i7-5650U CPU and
8GB RAM, on which the motion generator and controller
run in parallel. The perception system runs on a separate
onboard computer, which processes and communicates the
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Fig.7 CoM trajectories generated by the proposed method and realized
by the real robot on the terrain shown in Fig. 6a

acquired terrain information with the above PC. We imple-
mented the whole control system including perception, state
estimation, and motion generation and control, as depicted in
Fig.2, in which the only open-source libraries used include
Eigen3 for linear algebra computation, qpOASES for solving
QP problems (Ferreau et al., 2014), and GUROBI for solv-
ing MIQP problems (GUROBI, 2014). While solving QP or
MIQP problems, we did not implement linear equality con-
straints but solved them first to attain independent variables
instead to reduce the actual numbers of variables and con-
straints in optimization.

Figure 6a shows the testing terrain consisting of platforms,
staircases, and uneven piles that the robot is required to tra-
verse. The inclination angle of the whole staircases is about
20° and the height of every stair is about 12cm. The piles
have a circular upper face with a radius of 10cm and are
randomly placed with an irregular spacing between 20 and
50 cm. The maximum difference in height between neighbor-
ing piles is 16 cm. With the implemented perception system,
our robot has the capability of recognizing the upper surfaces
of the platforms, stairs, and piles for placing its feet while it
is walking over the terrain, as shown in Fig. 6b.

4.2 Experiments with a predefined walking pattern
and foothold selection strategy

Here we let the robot take the walking pattern as described in
Sect. 3.3 to traverse the terrain, where the duration of every
4SS phase is set to 0.2 s and that of every leg swing phase to
0.4s. Then, the duration of every half/hull walking cycle is
1.2/2.4 s. We use the proposed method with three sextic poly-
nomials to generate a 3-D CoM trajectory online for every
half walking cycle next to the currently executed one. Based
on the acquired terrain information, simple foothold selection
strategies are used in this experiment, while the optimization
of foothold selection is tested in Sect.4.4. On the platforms
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Fig. 8 Desired and real joint torques of each leg on the terrain shown in Fig.6a. a FL. b FR. ¢ HL. d HR. The torque limit for every joint is
[—120, 120] Nm

Table 1 Settings and results of the proposed method applied to every Half/Full walking cycle.

Test ID Order Continuity conditions QP size InF Computation time (ms)

Psir P str P str Pend P end p end Nyar Neon (%) Max Min Mean Std

Half-01 6 cce cce XXX cce cce XXX 45 180 0 1.034 0.452 0.551 0.088
Half-02 6 cce cce XXX cce cXc XCX 45 180 0 1.300 0.427 0.530 0.122
Half-03 7 cce cce cce cce cXc XCX 45 180 0 2.553 0.441 0.615 0.382
Half-04 7 cce cce cce 000 0X0 XO0X 51 180 0 4.149 0.569 0.878 0.559
Full-01 6 cce cce XXX cce cce XXX 81 360 0 2.415 0.927 1.426 0.347
Full-02 6 cce cce XXX cce cxc XCX 81 360 0 6.955 0.908 1.575 1.085
Full-03 7 cce cce cce cce cXc XCX 81 360 0 4.690 0.956 1.565 0.775
Full-04 7 cce cce cce 000 0XO0 X0X 87 360 0 9.479 1.193 2.684 2.011

Pstes Psirs Psir A0 Pends Pends Pend denote the initial and final values of p,, p,, p; of a motion segment, respectively. “c” and “0” indicate that the
continuity of a quantity is considered as a hard constraint and a penalty term in the objective function of the QP problem (12), respectively, and
“X” represents no continuity constraint. Three successive letters correspond to the x, y, and z components of a vector in R3. Ny, is the number
of independent variables after eliminating all the linear equality constraints and Nop is the number of linear inequality constraints, which are the

constraints on contact forces. “InF” stands for “infeasible”
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Fig.9 Total and omitted torques in test a Half-01, b Full-01, ¢ Half-03, and d Full-03

and stairs, footholds are selected within the detected flat areas
such that the robot can walk straight forward. On the piles,
their centers are determined and used as candidate footholds,
among which we select the leftmost or rightmost reachable
one for a swing leg or the nearest one ahead of the robot
depending on which path we would like the robot to take, the
leftmost, rightmost, or middle path on the piles. We let the
motion generator repeatedly replan the motion for the next
half walking cycle based on the terrain information consecu-
tively updated by the perception system as the robot proceeds
until the motion starts to be executed.

4.2.1 Hardware experiment results

While the leftmost reachable foothold on piles is selected
for every swing leg, the generated CoM trajectory is plotted
as the blue dashdotted curve in Fig.7. In this way, the robot
successively traversed the terrain and followed the generated
CoM trajectory very well, where the actually realized CoM
trajectory is plotted as the red solid curve in Fig. 7. The joint
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torques of the robot are shown in Fig. 8, which shows that
the desired joint torques determined by the motion controller
can be nicely realized by the robot. Figure 6 exhibits the snap-
shots of key stages as well as the perceived and reconstructed
terrain during robot’s locomotion. Other foothold selection
strategies on piles including the rightmost reachable one and
the nearest one in front of the robot are also tried, in which
cases the robot steadily walked over the testing terrain as well
by following the trajectories generated online by the pro-
posed method. These results are shown in the accompanying
video, indicating that the motion generator can efficiently
compute the required motions and work seamlessly between
the vision system and the motion controller.

4.2.2 More numerical tests

By the above real experiment, we obtained a 3-D model of the
testing terrain and continued to conduct a number of numeri-
cal tests on the proposed method with it, since the QP problem
(12) can have many variants. In the above case, we used sex-
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Fig. 10 CoM trajectories in y direction generated for every a half or
b full walking cycle with different settings for the QP problem (12) as
given in Table 1

Table 2 Results of the proposed method with different numbers of
sample points. Ngp is the number of samples inside every motion phase

Ngam QP size InF Computation time (ms)
Nyar ~ Ncon (%) Max Min Mean Std
45 180 0 1.034 0452  0.551 0.088
81 348 0 2.335 0.636  0.937 0.283
153 684 0 7.513 1.447  2.807 1.189
15 297 1356 0 36449  6.022 15.692  7.926

Sample points at the phase conjunctions are as in Fig. 3. Other settings
are as Half-01 in Table 1

tic polynomials for every half walking cycle and imposed the
continuity of the CoM position and velocity at the conjunc-
tion of two half cycles as hard constraints in the QP problem.
The sample points for checking the trajectory feasibility were
selected as shown in Fig.3. The order of polynomials, for-
mulation of continuity condition, and selection of sample
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I I
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| |
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Fig. 11 CoM trajectories in y direction generated with different num-
bers of sample points for every half walking cycle

Table 3 Results of the proposed method with polynomials of different
orders. Other settings are as Half—01 in Table 1

Order QP size InF Computation time (ms)

Nvar Neon (%)  Max Min Mean  Std
6 45 180 0 1.034 0452 0551  0.088
7 48 180 0 1.133 0480 0.631 0.131
8 51 180 0 1.605 0.582 0.808  0.203
9 54 180 0 2.055 0.654 0943 0.291

py (m)

Fig.12 CoM trajectories in y direction generated with polynomials of
different orders for every half walking cycle

points can all be changed, and we would investigate how
these changes influence the results.

First, we tried sextic/septic polynomials for every half/full
walking cycle, in which some of the continuity conditions
for the CoM position, velocity, and acceleration are added as
penalties in the objective function of the QP problem instead
of as constraints. The sample points were still selected as in
Fig.3. The settings and results of the proposed method are
summarized in Table 1, where test Half-01 is the previous
real experiment and the others are variants for comparison.

@ Springer
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Fig. 13 Snapshots of the robot traversing the terrain while carrying the cargo without knowing its exact position

— Without

With Floor Stair Stage Pile |

Fig. 14 CoM trajectories in y direction generated without and with
consideration of the CoM uncertainty

It can be seen that the planning for full walking cycle takes
a longer time since the number of sample points is doubled,
leading to the doubled numbers of contact forces and contact
force constraints in the QP. Moreover, we checked the feasi-
bility of every generated CoM trajectory at every millisecond
and observed no violation, though only a few sample points
were used in the QP problem. Another important matter that
we would like to verify is the omitted term in simplifying
the centroidal dynamics as in Sect.3.1. The omitted term
represents a torque, which versus the total torque including
the omitted term in four tests is plotted in Fig.9, where the
results in the other four tests are very similar and not included
here. From them we see that the x and y components of the
omitted torque are indeed small. In the z direction, interest-
ingly, the omitted torque is almost equal but opposite to the
total torque. Then, the locomotion generator actually con-
siders twice as much as the total torque in the z direction.
This favors the motion controller, which eventually needs to
cover a smaller torque close to the total torque to produce
the generated motion. The generated CoM trajectories are
almost the same in x and z directions and only have some
small variances in y, as shown in Fig. 10.

@ Springer

Table 4 Results with consideration of the CoM uncertainty. Other set-
tings of the QP are same as test Half—01 in Table 1

QP size InF Computation time (ms)
Nvar Ncon (%) Max Min Mean Std
225 1080 5.09 69.396 11.648 23915 8.642

Next, we increased the number of sample points and kept
all the other settings as test Half—01 in Table 1. The results are
exhibited in Table2 and the generated CoM trajectories are
plotted in Fig. 11. Apparently, increasing the sample points
increases the variables and constraints of the QP problem (12)
and its computation time, while the generated CoM trajecto-
ries remain similar since the motion obtained in test Half-01
is feasible all the time. Adding more sample points does not
bring more active constraints but does change the proportion
of every term in the objective function of (12), causing the
resulting trajectories to be slightly different in y.

Moreover, we changed the order of polynomials from test
Half-01 and obtained the results in Table 3 and Fig. 12, which
reveal that simply changing the orders of polynomials would
not substantially change the results and even the differences
in y are tiny. As a matter of fact, connecting two points with
a high-order polynomial is naturally accompanied by large
oscillation or lateral acceleration. Then, using a high-order
polynomial as the CoM trajectory will induce large contact
forces or overall length of the trajectory. However, since the
contact forces and trajectory length have been considered in
the objective function of (12), the computed trajectories tend
to be low-order polynomials or have very small coefficients
corresponding to the high-order terms even if higher-order
polynomials are initially set in (12), unless it is necessary.

We have tried many other settings, in which cases the
omitted term did not appear to be important either. Some
settings were also tested on the real robot and all successfully
enabled the robot to traverse the testing terrain. Since those
results are similar to the ones reported above, we do not
include them in this paper but would be happy to share upon
request.



Autonomous Robots

Table 5 Results of solving the MIQP problems (28) and (29) for a full
walking cycle. The settings of polynomials, continuity conditions, and
sample points are same as test Full-01 in Table 1. The leg’s workspace

(26) is considered. Npy,r and Ny, are the number of binary and real
variables, respectively

problem MIQP size InF Computation time (ms)

NBvar NRvar Ncon (%) Max Min Mean Std
(28) 7-10 225-279 1198-1307 0 843.32 573.88 687.21 81.17
(29) 250-350 765-1065 4058-4804 0 121659.0 27129.7 55789.3 22512.0

4.3 Experiments with an unknown load on the robot

We let our robot traverse the same terrain and carry a cargo
of 10kg whose position on the robot is not exactly known
or measured, as shown in Fig. 13. The convex region around
the nominal CoM position is taken to be an octahedron (i.e.,
Ny = 6), as depicted in Fig. 1. Figure 14 shows the CoM
trajectory generated by solving (19) for every half walking
cycle used in this experiment in comparison with the one in
the previous experiment. Here, the CoM movement in the y
direction becomes slightly greater such that the octahedron
can be well above the support area, while its movement in x
or z does not change obviously (not shown). Table4 shows
the performance of the proposed method in this case to be
compared with test Half—01 in Table 1. While there is a small
difference in the generated CoM trajectories, the computa-
tion time in the case of considering the CoM uncertainty
increases significantly since the size of the QP problem has
increased several times. Furthermore, it is noticed that the
CoM trajectory here can be infeasible sometimes. We think
that the groups of constraints at the sample points cause the
CoM motion to be more acute and likely to be infeasible
somewhere away from the sample points. The violation per-
centage can be reduced to 2% by taking 3 times more sample
points, but the computation time rises to about 1s. To solve
(19) and apply the method online, we used the same setting
of sample points as in the first experiment and let the motion
controller to overcome any local motion infeasibility in the
real experiment. As a result, the robot succeeded in carrying
the cargo over the terrain. The whole motion is shown in the
accompanying video.

4.4 Experiments with variable walking pattern

We now compute the CoM trajectory for the robot to walk
over the piles by solving (29) for every full walking cycle.
Here we still call it “walking cycle” since every foot is
required to take a step one after another, but it should be
noted that the orders and timings of steps are determined
by (29) rather than predefined. The time interval in Fig.5 is
taken to be 0.1s and the lower bound of the swing duration
is set to 0.4, i.e., Ks; = 4. With this setting, the computa-
tion time of (29) is shown in Table 5 but unfortunately it is

t(s)

Fig. 15 CoM trajectories generated by solving the MIQP problem (29)
and realized by the robot on the piles

too long for the MIQP problem to be solved online. So far,
we offline solved (29) with the recorded terrain model and
let the robot track the computed CoM trajectory online. The
generated and realized CoM trajectories are plotted in Fig. 15
and the joint torques in controlling the robot are plotted in
Fig. 16. Figure 17 reveals the actual walking patterns that the
robot used to traverse the piles, among which we notice four
different step sequences, as highlighted in Fig. 18. It is also
observed that the swing duration of every step tends to be the
lower bound and the robot is still inclined to have one swing
foot at a time even though we did not explicitly impose such
a constraint in (29). This is due to the contact force term
Jort defined by (13) in the objective function, which favors
the case of more supporting legs such that the contact force
on each foot at a time and the sum of their squares can be
smaller even if the resultant contact wrench needed for a
motion remains the same. This experiment is also collected
in the accompanying video, which shows that the robot took
a different path with different footholds to traverse the piles.
In addition, the computation time for solving (28) is also
provided in Table 5. Without considering the step sequence
and timing variances, it is still possible to solve (28) online
for just determining the footholds and the CoM trajectory
together.
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Fig. 17 Comparison of the walking patterns automatically determined
by (29) (marked by the solid lines) and the predefined one (marked by
the dashed lines) for the robot walking over the piles. The step sequences

5 Conclusion and future work

In this paper, we propose a locomotion generation method for
quadruped robots. We first discover that the quadratic term in
the robot’s centroidal dynamics induced by the cross product
of the position change and acceleration of the robot’s CoM
is minor and can be omitted for a medium-length motion.
Then, we parameterize the CoM trajectory as polynomials
and write its optimization as an easily-solvable QP problem.
Furthermore, the proposed method is extended to include the
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and timings of determined walking patterns are varying, while the swing
duration of every step (marked by the colored areas) tends to be the lower
bound

consideration of the CoM uncertainty and the leg workspace
as additional linear constraints in the QP problem. We also
allow variable step sequences, timings, and footholds and
rewrite the computing of CoM trajectory as a single MIQP
problem. The proposed locomotion generator together with
a vision system and a motion tracking controller has been
implemented on a real quadruped robot such that it can nicely
execute generated motions to traverse challenging terrains.
In the future, we will explore possible ways to combine
the angular motion with the CoM trajectory in the locomo-
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(d)

Fig. 18 Four different step sequences automatically determined by (29) for the robot walking over the piles. a HR-FR-HL-FL. b HL-FL-HR-FR.
¢ FL-HL-HR-FR. d HR-HL-FL-FR

tion generation such that the generated motion of the robot  problems. One way is to combine the modern machine learn-
is more effective and natural. Moreover, we will continue to  ing methods, which can be trained by the motion trajectories
explore more efficient ways to formulate and solve the TO  generated by model-based methods and help quickly deter-
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mine some settings in the TO. Last but not least, the capability
of our perception system will be improved in order for our
robot to travel over a wider variety of terrains and further
verify the capability of the proposed method.

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-022-10068-
3.
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6 Appendix—motion controller

Similar to many existing motion controllers for legged robots
(Gehring et al., 2013; Park et al., 2015; Focchi et al., 2017;
Bledt et al., 2018; Di Carlo et al., 2018; Feng et al., 2015;
Caron et al., 2015a; Kuindersma et al., 2016; Zheng et al.,
2019), our controller computes the required contact forces
to determine the feedforward joint torques and then the final
joint torques by adding the feedback joint torques, as depicted
by the green block in Fig. 2.

6.1 Computing of contact forces

The first step is aimed at computing the required contact
forces for the robot to produce the reference CoM trajec-
tory and base’s angular motion, which can be written as the
following QP problem:

min Jw+ I+ J
Frdatne 0T

subject to Nin,- <0 (30)
nl fi <
i=1,2,...,Nc.

The above objective function consists of three terms to
integrate different control goals. The purpose of the first term
Jy is to realize the reference CoM trajectory and angular
motion of the robot’s base. From (4), it is written as

Jo = (wdes - Gf)T W, (wdes - Gf) : 31)
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where W,, € R®¥¢ is a positive-definite diagonal weight
matrix and w9* is the desired wrench given by

sedes
wie = | M8 (32)
mpg(pg" — 8 + L

Here, 15‘(1;“ is the desired CoM acceleration derived from the

reference acceleration }irGef, velocity j)rGef, and position prgf
together with the actual velocity p; and position p of the

CoM using the proportional-derivative (PD) control law:
b = b+ KG (0" — bo) + KG (P~ pa). ©33)

where K g and Kg are PD gains. From (5), we write the
desired time derivative of angular momentum as

- des S - d S S N
where a')ges is the desired angular acceleration as

\%
(bges — @Bef + Kf; (w{)ef — (,)0) + K‘;; (R{)eng) s (35)

where R, Ry € § O (3) represent the reference and actual
orientations of the robot’s base with respect to the global
frame, respectively, and (Rf)eng )v is the associated vector
of rotation to change R to R{)ef.

The second term J; is used to penalize high joint toques
and written as

Jo=frr.w. Jry, (36)

where W, € RN/*NJ is a positive-definite diagonal weight
matrix and JI e RN/3Nc s the transposed Jacobian
matrix, comprising the last Ny rows of JT in (1) and con-
verting contact forces to joint torques.

The last term J ¢ regulates the contact forces, i.e.,

Jf=(fdes—f)T Wy (fd“—f), (37)

where Wy € RINe>3NC j5 3 weight matrix and f des com-
prises the desired contact forces. When a foot is contacting
and expected to remain on the ground, we take its desired
contact force to be the optimal value obtained by solving the
QP problem (30) in the previous control cycle. For a foot
that is in the air but expected to contact or is contacting but
expected to leave the ground, we simply set its desired con-
tact force to zero.
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6.2 Computing of joint torques

The second step of the motion controller is to compute the
joint torques for controlling the robot. Since the leg’s mass of
a quadruped robot is often negligible, we can skip the robot’s
whole-body dynamics and simply compute the joint torques
for controlling the robot as (Focchi et al., 2017; Mastalli et
al., 2017)

T=—JT Ky (¢ - q) + K (¢ —q).  G®)

where ¢ and ¢ with or without the superscript “ref” are the
reference or current joint velocities and angles, respectively,
and K Z, and K Z are the PD gains mapping the errors in joint
angles and velocities directly into the joint torques for joint
trajectory tracking. Here, the reference joint trajectories ¢"f
are calculated through inverse kinematics with the reference
footholds and body trajectories determined by the motion
generator, as illustrated in Fig. 2 and discussed in this paper.
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