
Real-time Inertial Parameter Identification of Floating-Base Robots
Through Iterative Primitive Shape Division

Jiafeng Xu1, Yu Zheng1†, Xinyang Jiang1, Sicheng Yang1, Lingzhu Xiang1, Zhengyou Zhang1, Fellow, IEEE

Abstract— Dynamic models play a key role in robot mo-
tion generation and control and the identification of inertial
parameters is a critical component for obtaining an accurate
dynamic model of a robot. This paper presents a novel iterative
primitive shape division method for the inertia parameter
identification of floating-base robots. Describing a robot by a set
of primitive shapes with uniform mass distributions, the method
iteratively divides the primitive shapes into smaller ones and
refines their masses, which quickly converges to yielding the
true inertia parameters of the robot. This method guarantees
the physical consistency of the obtained parameters, possesses a
high computational efficiency for online deployment, and works
with no contact force measurement. Furthermore, it can be
used to estimate the position and magnitude of an external
load applied to the robot. Simulations and experiments on a
quadruped robot have been conducted to verify the effectiveness
and efficiency of the proposed method.

I. INTRODUCTION

Dynamic models are of great importance for robot motion
generation and control. An accurate dynamic model can
improve the performance of a robot. Commonly, the model
parameters of a robot can be obtained from its computer-
aided design (CAD) model. For robots containing non-
standard parts such as industrial computers, circuit boards,
cameras, etc., however, CAD parameters often cannot reflect
the true mass distribution characteristics. Moreover, when
there are unknown loads on the robot, the inertia parameters
from CAD or identified offline do not include those infor-
mation and need to be identified in real time.

A. Related Work

Mayeda et al. [1] proposed an inertial parameter iden-
tification method based on the characteristics of specific
motion, which is easily performed without decomposing the
manipulator into parts. Atkeson et al. [2] recast the nonlin-
ear Newton-Euler equations into a form linearly related to
the inertial parameters and completed the inertia parameter
identification of links and unknown load on MIT Serial
Link Direct Drive Arm and PUMA 600 robots based on the
classic least-squares method. Ayuzawa et al. [3] developed
a method to identify the mass, center of mass (CoM), and
inertia tensor of human body segments from a short-time
measurement using the motion capture system and force
plates. Nevertheless, the obtained results are not necessarily
physically consistent and there can exist negative masses and
non-positive definite inertia matrices. To solve this issue,
Ayuzawa and his colleagues [4], [5] continued to improve
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this and propose a real-time method to identify the physically
consistent mass characteristics of various parts of the human
body. The new method approximates a rigid body by finite
mass points and represents physically consistent conditions
as the positivity of mass of each point. However, this method
often requires a large number of points to obtain relatively
accurate inertia parameters of a rigid body, leading to a sig-
nificant amount of computation time for a multi-link robot.
Yamane [6] reorganized the Lagrangian dynamic equations
into a linear expressions through regression matrix calculated
by numerical derivative and realized the kinematic and dy-
namic parameters identification of the humanoid robot. This
method needs joint torque and foot force sensors. Mistry et
al. [7] developed a general framework for least-squares fitting
of full-body inertial parameters of floating-base systems with
only one set of partial force/torque sensors. The solution of
the least-squares method is reprojected to meet the physical
consistency constraints, which affects the accuracy of iden-
tified parameters and increases the computational load.

Lee and Park [8] proposed a geometric algorithm based
on a coordinate-invariant definition of distance. It signifi-
cantly improves the accuracy and robustness of parameter
estimation, even for high-dimensional systems that are af-
fected by measurement noises and ill-conditioned reference
trajectories. However, the global solution can hardly be
guaranteed because of the non-convexity of the problem and
the computational burden is somewhat heavy. Subsequently,
they [9] remedied the non-convexity through a convex for-
mulation of the regularization term based on a second-order
approximation of the Riemannian distance and optimized the
computational complexity. Kwon et al. [10] introduced a
unified kinodynamic model identification framework.

Other methods based on linear matrix inequalities [11],
[12], Bayesian estimation [13], and maximum likelihood
estimation [14] have also been developed for the inertial
parameter identification of robots. Bayesian and maximum
likelihood methods are robust to measurement noises and ill-
conditioned data, but the models usually contain significant
deterministic structural errors, which cannot be explained
by random variables [15]. Olson [16] pointed out that the
maximum likelihood method should be considered only
when the measurement position and torque are noisy.

B. Our Work

In this paper, we propose a real-time method for the inertia
parameter identification of floating-base robots. First, we
represent every robot’s link with a set of primitive shapes,
where each primitive shape has a known size and position in
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the link but an unknown mass to be determined. Then, the
inertia parameters of every link can be calculated from its
primitive shapes with all the shape’s masses as unknowns and
the parameter’s physical consistency can be imposed simply
by restricting the masses to the positive. In this way, the
identification of the robot’s inertia parameters is reduced to
the identification of these unknown masses, which can be
written as a simple quadratic programming (QP) problem.
To refine the identification result, we present an iterative
procedure to adaptively and gradually divide some of the
primitive shapes into smaller ones, which guarantees that the
new identified parameters at every iteration are better. As the
QP problem to be solved at every iteration is very simple,
the iterative procedure converges quickly, ensuring the high
efficiency of the proposed method.

The main contributions of this paper include
• An iterative primitive shape division method is proposed

to identify the physically consistent inertia parameters
of a floating-base robot (Sections III-C and III-D);

• The proposed method can work with no contact force
measurement and use only the joint angle and torque
measurements and the IMU data, which are usually
available on a floating-base robot (Section III-B);

• The proposed method has been tested on a quadruped
robot in both simulation and real experiments, showing
a superior performance in computational accuracy and
efficiency over some of the existing methods, and it has
also been applied to the unknown load identification on
the robot (Section IV).

II. DYNAMIC MODEL

The floating-base framework provides a general represen-
tation of the rigid-body system unattached to the world and
it can be attached to an inertial frame with six degrees
of freedom (DoFs). The dynamics of a floating-base robot,
having M rigid bodies and NG DoFs, can be described as

H(q)q̈ +C(q, q̇)q̇ +G(q) = ST τ + JT (q)f (1)

where q, q̇, and q̈ ∈ RNG denote the generalized position,
velocity, and acceleration, respectively, H(q) ∈ RNG×NG

is the inertia matrix, C(q, q̇) ∈ RNG×NG is the centrifugal
and Coriolis matrix, G(q) ∈ RNG is the gravitational force
vector, S = [0(NG−6)×6 I(NG−6)×(NG−6)] is the actuated
joint selection matrix, τ is the joint torque vector, J ∈
RNf×NG is the Jacobian of Nf constraints, and f ∈ RNf is
the constraint force vector.

The equation (1) of motion can be rewritten in a form that
is linear to the inertia parameters [2], i.e.,

Y (q, q̇, q̈)Φ = ST τ + JT (q)f (2)

where Y (q, q̇, q̈) ∈ RNG×10M is the regression matrix,
Φ =

[
ΦT

1 ΦT
2 · · · ΦT

M

]T ∈ R10M is the vector of
inertial parameters of M links and each link has 10 inertia
parameters constituting Φi for i = 1, 2, . . . ,M as

Φi = [mi mirxi miryi mirzi Ixxi
Ixyi Ixzi Iyyi Iyzi Izzi]

T (3)

load

Base coordinate 
system

load = 1.95 kg

Fig. 1. A quadruped robot developed by Tencent Robotics X carrying an
external load.

where mi is the mass, rxi, ryi, rzi are the coordinates of the
CoM, and Ixxi, Ixyi, Ixzi, Iyyi, Iyzi, Izzi are the components
of the inertia tensor of link i with respect to the coordinate
frame at the joint associated with link i.

III. INERTIA PARAMETER IDENTIFICATION

A. General Identification Problem Formulation

In the general identification problem, the generalized coor-
dinates, joint torques, and external forces acted on the robot
need to be measured by sensors such that the regression ma-
trix Y can be calculated through numerical differentiation [6]
or chain derivation [17] methods in every control cycle.
Collecting the measurement data over excitation trajectories
and assembling (2) for all the measurements, we obtain

Ỹ Φ = F̃ (4)

where Ỹ and F̃ are the concatenations of Y (q, q̇, q̈) and
ST τ + JT (q)f for all the measurements of q, q̇, q̈, τ ,
and f over the excitation trajectories, respectively. Then, the
inertial parameter identification problem can be written as

argmin
Φ

(Ỹ Φ− F̃ )TW (Ỹ Φ− F̃ ) (5)

where W is the weight matrix to regulate different compo-
nents of Ỹ Φ−F̃ as they have different units. Furthermore, to
ensure the physical consistency of the identified parameters,
the inertia parameters of each link must satisfy

mi > 0, IBi � 0 (6)

where IBi is the body inertia tensor matrix of link i.
However, not all the floating-base robots are equipped with

full force/torque sensors and the full construction of (4) is
sometimes infeasible. Also, solving (5) subject to (6) is a
sequential QP problem [18], whose computation time would
not allow the identification to be performed in real time. The
rest of this section is to solve these issues.

B. Identification with Only Joint Torque Sensing

When the direct contact force measurement is unavailable,
as on our quadruped robot shown in Fig. 1, it is still possible
to identify the inertial parameters with only the measurement
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Fig. 2. Representation of the robot base using (a) 54 mass points distributed
in three layers or (b) 11 primitive shapes including 4 cylinders and 7 cuboids.

of joint torques [7]. Following the work [7], we first conduct
the QR decomposition of JT as

JT = Q

[
R

0NG−Nf

]
(7)

where Q ∈ RNG×NG is an orthogonal matrix and R ∈
RNf×Nf is an upper triangular matrix of full rank. Premul-
tiplying (2) by QT and combining (7), we then obtain

QTY (q, q̇, q̈)Φ = QTST τ +

[
R
0

]
f (8)

Extracting the last NG − Nf rows of (8), which does not
depend on the contact forces f , yields

NuQ
TY (q, q̇, q̈)Φ =NuQ

TST τ (9)

where Nu =
[
0(NG−Nf )×Nf

I(NG−Nf )×(NG−Nf )

]
is the

row selection matrix.
Using (9) instead of (2) and following the same procedure,

we can establish a similar equation to (4) and optimization
problem to (5) for the inertia parameter identification with
only joint torque sensing. Without introducing new notations,
we continue to the notations Ỹ and F̃ in the following dis-
cussion while they are now derived from NuQ

TY (q, q̇, q̈)
and NuQ

TST τ in (9) instead of the counterparts in (2).

C. Primitive Shape Representation

The physical consistency condition (6) imposes nonlinear
constraints on and makes the optimization problem (5) more
complex. By approximating a rigid body with finite mass
points, as illustrated in Fig. 2a, the problem can be reduced
to a QP problem with only the boundary constraints on the
mass of every point [5]. However, a mass point does not
contain the volume and inertia tensor information, and to
accurately approximate the inertia of a rigid body, a number
of mass points are needed, which results in a large-scale QP
problem. Inspired by [5], in this paper we propose using a
set of primitive shapes (e.g., ellipsoids, cuboids, cylinders,
polyhedra, and etc.) to represent a rigid body, as depicted in
Fig. 2b, where every primitive shape has a known size and
position in the rigid body and the mass distribution within a
primitive shape is assumed to be uniform. One can refer to
the CAD model of a robot to set the initial types, numbers,
sizes, and positions of primitive shapes for every robot link,
as we do for the base of our quadruped robot in Fig. 2b.

To make it easier for readers to understand the proposed
method, without loss of generality, we take cuboids as an
example hereinafter and assume that link i of a robot is

represented by ni cuboids and the principal axes of every
cuboid are aligned with the coordinate frame of link i. For
cuboid j on link i, let mi,j denote its mass, li,j , wi,j , hi,j its
side lengths, and ci,j its CoM position in the link coordinate
frame. Here it should be noted that only mi,j’s are unknowns
to be determined in the identification while li,j , wi,j , hi,j ,
and ci,j’s are all known when we set the cuboids. Then, the
inertial parameters of cuboid j expressed in the coordinate
frame of link i can be written as

Φi,j =
[
mi,j mi,jc

T
i,j vec(IBi,j −mi,j ĉ

2
i,j)
]T

(10)

where ĉi,j is the skew-symmetric matrix generated by ci,j ,
vec(IBi,j − mi,j ĉ

2
i,j) converts the symmetric inertia tensor

matrix IBi,j −mi,j ĉ
2
i,j into a 6-D vector as in (3), and IBi,j is

the body inertia tensor of cuboid j, i.e.,

IBi,j =
mi,j

12

w2
i,j + h2i,j 0 0

0 l2i,j + h2i,j 0
0 0 l2i,j + w2

i,j

 . (11)

Extracting the common factor mj , we can rewrite (10) as

Φi,j = mi,jUi,j (12)

where ui,j =
[
1 cTi,j vec(IBi,j/mi,j − ĉ2i,j)

]T
. From (11)

we see that ui,j depends only on known parameters li,j , wi,j ,
hi,j , ci,j and is known. By adding all ni cuboids for link i
together, the inertia parameters of link i can be expressed as

Φi =

ni∑
j=1

mi,jui,j = Uimi (13)

where Ui = [ui,1 ui,2 · · · ui,ni
] and mi =

[mi,1 mi,2 · · · mi,ni
]T . We can further write the vector

Φ of inertia parameters of the robot as

Φ = Um (14)

where U = diag(U1,U2, . . . ,UM ) ∈ R10M×Nm , m =
[mT

1 mT
2 · · · mT

M ]T ∈ RNm , and Nm =
∑M

i=1 ni is
the number of unknown parameters.

Substituting (14) into (5) leads to a new identification form

argmin
m

(Ỹ Um− F̃ )TW (Ỹ Um− F̃ ) (15)

where the physical consistency constraints are simplified to
mi,j > 0. The problem (15) is a simple QP problem with Nm

variables, for which several off-the-shelf solvers are available
and we use qpOASES [19] in this paper.

D. Adaptive Iterative Division

Since every primitive shape has a uniform mass distribu-
tion, the initial setting of primitive shapes may not be able to
accurately reflect the mass distribution of the robot. Instead
of starting with a large set of primitive shapes, which will
induce a large-scale QP problem, we propose an iterative
procedure to adaptively divide primitive shapes into smaller
ones and refine their masses such that the iteration can
quickly converge to yielding the accurate inertia parameters
of the robot and the number of primitive shapes and the sizes
of QP problems can be kept small, as illustrated in Fig. 3.
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Fig. 3. Illustration of iterative shape division. At every iteration (division),
the masses of remaining and divided primitive shapes are recomputed by
solving a QP problem as (15). The initial condition of the QP problem is
taken to be the result of the previous iteration to expedite the computation.

Algorithm 1 Iterative Shape Division

1: Set an initial set of primitive shapes
2: Let U0 be the matrix U as used in (14)
3: Let m0 be the optimal solution of (15)
4: k ← 0
5: repeat
6: Calculate vi,j’s by (16) for every primitive shape
7: Divide the primitive shape with the maximal vi,j
8: k ← k + 1
9: Recompute Uk and mk

10: until ‖Ukmk −Uk−1mk−1‖ < ε
Output: Uk and mk

In this paper, we choose one primitive shape and divide it
into two at every iteration, which can be extended to includ-
ing more complex operations such as dividing more shapes
into multiple parts or merging small shapes. Considering that
it would be more beneficial to divide a primitive shape with
large mass or volume, we define a division criterion as

vi,j = k1mi,jVi,j + k2mi,j/Vi,j (16)

where Vi,j is the volume of primitive shape j on robot link i
and k1 and k2 are the weights. At every iteration, we simply
choose the primitive shape with the maximal vi,j to divide.

After every division, a new QP problem in the form of (15)
with one more mass variable will be solved to recalculate
the optimal mass values of all the primitive shapes. The
initial mass values as well as the sizes and positions of
newly-generated shapes from division can be calculated from
their original shape to expedite the solution of the new QP
problem, as marked in Fig. 3. With this initial condition,
we can also prove that the initial objective value of the new
QP problem equals the optimal objective value of the QP
problem at the previous iteration. Then, the optimal objective
value of the new QP problem will not be greater than
the previous one, which implies that the optimal objective
value is monotonically decreasing as the division procedure
iterates. As the optimal objective value is bounded below by
zero, the procedure is guaranteed to converge. Algorithm 1
describes the pseudo-code of this procedure.

IV. EXPERIMENTS AND DISCUSSIONS

A. Experimental Setup

The proposed method has been implemented in C++ and
experiments have been conducted on our quadruped robot

(Fig. 1). The robot has 18 DoFs and is equipped with an
IMU, joint encoders, and a Pico-ITX form factor x86 single-
board computer with the Intel i7-8665UE processor running
the Linux 5.4 NOHZ FULL kernel and Ubuntu 20.04. An on-
line Butterworth low-pass filter is implemented to eliminate
the high-frequency noise in the measured joint angles prior
to the calculation of joint velocities and accelerations. A state
estimator similar to the work [20] and an MPC controller for
the robot to execute reference motions are also implemented
and run at 1 kHz. The joint torques are estimated from motor
currents during the experiments. The measurement data for
the inertia parameter identification are collected every 2 ms.

We conducted both simulation and real experiments on the
proposed method in two cases:

1) Base Link Identification: We let the robot trot for 5 s and
identify the inertia parameters of the base link every 20
ms with 10 sets of measurement data collected within
the 20 ms. During the 5 s, therefore, the identification is
performed 250 successive times. To deal with the noise
and abnormal measurement data, we take a weighted
average of the current and last identified parameters as
the final result of the current identification, which acts
as a low-pass filter and can be written as

Φt = αΦt + (1− α)Φt−1 (17)

where α is the filter coefficient and α = 0.5 in the
experiments. In this case, we set the primitive shapes
as shown in Fig. 2b and do not further divide them. The
inertia parameters of the other links are taken to be the
CAD values permanently as they are light-weight.

2) Unknown Load identification: We place a block weigh-
ing 1 kg with a size of 4 × 4 × 4 cm3 in simulation
and 1.95 kg with a size of 8 × 8 × 4 cm3 in the
real experiment at a specific position within an area of
0.4 × 0.2 m2 on the robot’s base, as shown in Fig. 1,
while the robot is trotting. The load information is
unknown to the robot. Starting with a cuboid with a
height of 4 cm covering the area, we use the proposed
method to identify the inertia parameters of the load
with respect to the robot’s base. In this case, a chosen
cuboid is divided from its longest side and the inertia
parameters of the robot are kept constant.

We compare the proposed method with three existing ones:
• Nonlinear: solving (5) subject to the nonlinear physical

consistency constraints (6) by Ceres Solver [21];
• Linear: solving (5) with only the positive-mass con-

straint as a QP problem, sacrificing the physical cor-
rectness of the result for faster computation;

• Points: solving the QP problem formulated in [5] with
the points assigned as in Fig. 2a.

B. Simulation Results

1) Base Link Identification: Fig. 4 plots the identified
inertia parameters of the base link by the four methods in
comparison with the CAD values, which are the ground truth
since the CAD model is used in simulation. It can be seen
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Fig. 4. Comparison of the inertia parameters obtained on the simulated robot by four methods and the CAD parameters as the ground truth.
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Fig. 5. Three projected joint torques in the null space of contact Jacobian calculated with the four sets of identified parameters in comparison with the real
values obtained directly from the measured joint torques on the simulated robot.
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TABLE I. RESULTS OF BASE LINK IDENTIFICATION

Algorithm Simulation Experiment
tc vobj ep tc vobj ep

Nonlinear 3.086 0.6542 0.0181 3.541 2.2988 1.4258
Linear 0.032 0.6566 0.0218 0.048 2.8716 1.8833
Points 0.483 0.6956 0.0838 0.436 2.3685 1.5029
Ours 0.045 0.6518 0.0147 0.052 2.5781 1.4950

tc—average computation time (ms)
vobj—average optimal objective value of (15)
ep—average error between the identified and CAD parameters

that the result of our method is very close to ground truth.
Fig. 5 shows the projected joint torques calculated with the
identified parameters, which cross-validate the correctness
of the identification. The average computation time, optimal
objective function, and difference from the CAD parameters
evaluated by the 2-norm are collected in the left half of
Table I, which show that the proposed method outperforms
the other methods in both accuracy and efficiency.

2) Unknown Load Identification: Fig. 6 shows the iter-
ation of the proposed division procedure used to identify
the external load, by which the initial cuboid keeps being
divided into smaller cuboids and the mass distribution over
the cuboids is gradually concentrated on the true location
of the load. The optimal objective value, the computation
time, and the error in the identified inertia parameters of
the load compared with the ground truth versus the times of
division are plotted in Fig. 7, which shows that the proposed
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Fig. 7. Optimal objective value, computation time, and error in the iden-
tified parameters evaluated by the 2-norm versus the times of division in
simulation. The iteration has converged after the 7-th division.

procedure quickly converges after several iterations.

C. Experiment Results

1) Base Link Identification: Fig. 8 shows the identification
results on the real robot. Although the CAD parameters
can no longer reflect the true values, we still take them
as a common reference in comparing all the results of the
four methods, since we do not have a better reference on
hand. It can be seen that the result of the proposed method
is comparable to the others, which is cross-validated by
the fitting of the projected joint torques with the identified
parameters, as shown in Fig. 9. Some statistics results are
provided in the right half of Table I, which again show the
superior performance of the proposed method.

2) Unknown Load Identification: In the load identifica-
tion, we use the inertia parameters of the robot’s base link
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on the real robot. The shaded rectangles with different intensities of red color represent the primitive shapes (cuboids in this example) during the iteration
and the color intensity is proportional to the cuboid’s mass.
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Fig. 11. Optimal objective value, computation time, and error in the
identified parameters evaluated by the 2-norm versus the times of division
in the real experiment. The iteration has converged after the 11-th division.

identified above. Fig. 10 reveals the iterative process of iden-
tifying the inertia parameters of the load with the proposed
division procedure, which again shows the convergence of
the mass distribution to the load. The performance of the
procedure versus the times of division is shown in Fig. 11.

D. Discussions

From Fig. 5 and 9, we notice that the difference between
the joint torques calculated with the identified parameters and
the actual ones in the real experiment is greater than that in
simulation. This is mainly because the actual measurement
data for the identification contain more noises and errors. For
example, with the absence of joint torque sensors, the actual
joint torques are currently calculated from motor currents
and can be affected by friction or other time-varying or
unmodeled factors. Also, the joint accelerations are obtained
by numerical difference, which has numerical errors. In the

unknown load identification, similarly, the parameter error in
the real case (Fig. 11) is bigger than that in the simulated
case (Fig. 7). In addition to the errors in the measurement
data, another reason here is that the robot model used in
the real experiment has errors, which will propagate into the
identified load. Despite errors, the proposed method can still
reasonably identify the inertia parameters and is very fast.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a method for the real-time inertia
parameter identification of floating-base robots based on an
iterative primitive shape division procedure. Approximating
each link of a robot with primitive shapes, the identification
problem can be reduced to the identification of masses of the
shapes, which can be quickly computed as a QP problem and
guarantees the physical consistency of the obtained inertia
parameters. Through the adaptive iterative division of shapes,
the identified parameters can be refined and quickly converge
to the true values. The effectiveness and efficiency of the
proposed method have been verified on a quadruped robot
in both simulation and real experiments.

Currently, we only consider dividing the primitive shapes.
In terms of the future work, we will try more sophisticated
operations on the primitive shapes (e.g., adding, deleting, and
merging) as well as other strategies and criteria for choosing
appropriate operations at every iteration such that the method
can be more accurate and efficient. Moreover, we will try the
method with more motion trajectories on more robots.
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