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Abstract— In this paper, we present a novel method for
mobile manipulators to perform multiple contact-rich manipu-
lation tasks. While learning-based methods have the potential
to generate actions in an end-to-end manner, they often suffer
from insufficient action accuracy and robustness against noise.
On the other hand, classical control-based methods can enhance
system robustness, but at the cost of extensive parameter tuning.
To address these challenges, we present MOMA-Force, a visual-
force imitation method that seamlessly combines representation
learning for perception, imitation learning for complex motion
generation, and admittance whole-body control for system
robustness and controllability. MOMA-Force enables a mobile
manipulator to learn multiple complex contact-rich tasks with
high success rates and small contact forces. In a real household
setting, our method outperforms baseline methods in terms
of task success rates. Moreover, our method achieves smaller
contact forces and smaller force variances compared to baseline
methods without force imitation. Overall, we offer a promising
approach for efficient and robust mobile manipulation in the
real world. Videos and more details can be found on https:
//visual-force-imitation.github.io.

I. INTRODUCTION

Mobile manipulation combines two fundamental robot ca-
pabilities: mobility and manipulation. These two capabilities
substantially extend robot applications in the real world
compared to static manipulation [1]. For example, mobile
manipulation enables robots to complete tasks involving
manipulations with large workspaces (e.g., opening closet
doors). However, mobile manipulation poses significant chal-
lenges when it comes to real-world tasks. The challenges are
mainly twofold. First, uncertainties caused by localization
and control can lead to potential safety issues, especially in
contact-rich tasks. Second, the high-dimensional configura-
tion space makes motion generation and control complex.

Early work assumed prior knowledge of the scene and
explored path planning [2] and task and motion planning
(TAMP) [3] for mobile manipulators. Whole-body control
algorithms have been studied to solve high-dimensional op-
timization problems [4], [5], [6]. However, the environment
is also simplified to ease the optimization complexity. Data-
driven methods such as imitation learning [7], [8] and rein-
forcement learning [9] are becoming popular as they enable
robots to learn directly from visual observation. Recent
works extend the large-scale pre-training paradigm from
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Fig. 1: Overview. We perform six real-world contact-rich
mobile manipulation tasks. The success rates of our method
are shown at the top of each image.

computer vision and natural language processing to static
manipulation [7], [8], [10] and navigation [11]. They show
promising results in various real robot tasks. Compared to
exclusively learning from expensive robot data, this paradigm
makes use of existing large-scale dataset [12], [13] to pre-
train a visual representation model which is able to learn
useful visual properties of the world for efficient policy learn-
ing. However, these methods are rarely designed for contact-
rich mobile manipulation tasks. And visual imitation learning
generally suffers from the “last-centimeter” error [14]. This
problem becomes non-negligible in many real-world contact-
rich tasks as it may lead to severe mechanical damage to the
environment and robots.

In this paper, we argue that wrench F = [m, f ] ∈ R6

(m is the torque and f is the force) is critical in terms
of task completion and safety. To this end, we propose a
novel visual-force imitation method for solving real-world
contact-rich mobile manipulation tasks. In contrast to previ-
ous work which only imitates kinematic actions, we extend
a state-of-the-art visual imitation method [15] to support
both kinematic action and force imitation. This enables us to
tackle the uncertainties caused by localization and control in
mobile manipulation, and thus ensures safer robot execution.
Moreover, we leverage whole-body control (WBC) [6], [16]
to solve the high-dimensional control problem of mobile ma-
nipulators. This allows the robot to track the trajectory gen-
erated by the predicted action while regulating the wrench to
imitate the expert wrench. We perform multi-task learning on
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six household contact-rich tasks (Fig. 1). Results show that
our method outperforms several baseline methods without
force imitation on task success rate. In particular, our method
achieves an average success rate of 73.3% on the six tasks,
while the best baseline method achieves 45.0%. Additionally,
with force imitation, the average absolute contact wrench and
the average wrench variance decrease, indicating a safer and
more stable contact between the robot and the object.

The key contributions are summarized as follows:

• We address the challenging problems caused by uncer-
tainty and high-dimensional kinematics in real-world
mobile manipulation tasks in an imitation learning
context, and propose an effective visual-force imitation
method to solve real-world mobile manipulation tasks.

• We present systematic real robot experiments on six
contact-rich mobile manipulation tasks and showcase
the performance of the proposed system on these chal-
lenging tasks.

II. RELATED WORK

A. Mobile Manipulation

Previous work explored using task and motion planning
(TAMP) to plan and control mobile manipulators [3]. An-
other line of methods leverages a move-and-act pipeline [17].
However, it is often challenging to find viable kinematic
solutions due to constraints from robots and/or environments.
Alternatively, whole-body control [18], [19] are able to deal
with complex constraints arise from mechanical limitations,
manipulability or dynamic obstacle avoidance requirements.
Learning-based methods are adopted in mobile manipulation
to enable robots with visual feedback. In particular, imitation
learning methods try to mimic actions from human demon-
strations [20], [21], [22]. Additionally, force information
must be carefully considered to improve task completion and
safety [17].

B. Robot Learning from Demonstrations

Learning from demonstrations is a sample-efficient and
practical approach for training robots to perform complex
manipulation skills. A popular line of work leverages behav-
ior cloning (BC) to efficiently learn from human demon-
strations [23], [8], [24], [14], [25], [26]. A recent work
trains a transformer to learn multiple tasks with a dataset
containing ∼130k episodes [22]. Additionally, there has been
growing interest in learning general representations for robot
manipulation based on pre-trained models [7], [8], [27], [28].
Inspired by these methods, we use a pre-trained model to
extract visual representations in this paper. The most related
work is a non-parametric method that retrieves expert actions
by comparing the representation of the observation image
captured in the rollout with those of the observations in the
expert trajectories [15]. Our method differs in that we imitate
both kinematic actions and wrenches while this work only
imitates kinematic actions.

C. Force Compliant Manipulation

In classical control community, several early works on
force compliance control have been developed. Specifically,
[29] and [30] provide implementations of impedance and/or
admittance control for robot manipulation based on wrench
feedback. Manipulation tasks with articulated constraints
are very common in household environments, e.g., opening
doors and drawers. Force compliance control is generally
used to provide the required compliance for tackling these
tasks [31]. Force compliance is also essential for dexterous
in-hand manipulation and teleoperation [32]. Inspired by the
previous work, we believe force imitation is able to enhance
the performance of mobile manipulators through improved
action accuracy and safer environment interaction.

III. METHOD

We consider contact-rich mobile manipulation tasks where
a robot interacts with the environment or an object within the
environment. Besides manipulation, such tasks also necessi-
tate the integration of mobility due to large workspace. Our
method mainly consists of two parts: 1) an action-wrench
prediction module and 2) an admittance whole-body control
module (Fig. 2). At each time step t, the action-wrench
prediction module takes as input the RGB image ot captured
from an arm-mounted camera and generates a kinematic
action at ∈ SE(3), a gripper action gt ∈ {−1, 0, 1}, a target
wrench for the next time step F̂t+1 ∈ R6 and a terminate flag
Tt ∈ {0, 1} which indicates rollout termination. If gt = 0
and Tt = 0, the control module takes as input at and F̂t+1

and controls the robot to track a target pose generated by
at while regulating the contact wrench to imitate F̂t+1. If
gt = 1 (or gt = −1), the robot opens (or closes) the gripper.
If Tt = 1, the rollout terminates the rollout. We assume
access to an expert dataset D containing expert trajectories
of multiple tasks. Each trajectory consists of multiple frames
d captured at different time steps. Each frame is a tuple
d = {oe,ae,ge,Fe, T e} where oe, ae, ge, Fe, and T e

are the observation image, kinematic action, gripper action,
wrench, and terminate flag, respectively. We use superscript
e on variables to indicate that they are from the expert dataset
D. Alg. 1 shows the algorithm of our method.

A. Action-Wrench Prediction

Our prediction module is built on a state-of-the-art im-
itation learning method [15]. It consists of two phases:
offline observation encoding (Line 1-5 of Alg. 1) and online
rollout (Line 6-17). In the offline phase, we leverage a pre-
trained vision encoder to project the observation image of
every frame in D to a deep embedding ze ∈ Ze (Line
3-5). The embedding holds a compact representation for
the visual observation. We use a recently proposed self-
supervised visual representation model [33] as the pre-trained
visual encoder and compare the performance of different
representation models in Sec. IV.

During the online rollout phase, at each time step t, the
captured observation image ot is also encoded as zt using the
same visual encoder (Line 10). zt is used to predict the action
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Fig. 2: MOMA-Force The observation images of the expert data are converted to representation vectors by a visual encoder.
In the rollout, the observation image is converted to a representation vector with the same visual encoder. The action and
target wrench are predicted by retrieving the action and wrench of the expert data with top-1 similarity of the representation
vectors. We use admittance whole-body control (a-WBC) to control the robot.

Algorithm 1: VisualForceImitation
Input:
D - Expert dataset
imax - Maximum rollout iteration

1 Ze ← ∅
2 for d← D do
3 (oe,ae,Fe)← d
4 ze ← VisualEncoder(oe)
5 Ze ← Ze ∪ {ze}
6 i← 0
7 while i < imax do
8 i← i+ 1
9 (ot,Ft,Pt)← getCurrentState()

10 zt ← VisualEncoder(ot)

11 (at, F̂t+1, Tt)← Retrieve(zt, Ze)
12 if Tt = 1 then
13 return

14 P̂t+1 ← Pt ◦ at
15 ∆Pt+1 ← ForceControl(Pt, P̂t+1,Ft, F̂t+1)

16 P̂t+1 ← P̂t+1 ◦∆Pt+1

17 a-WBC(P̂t+1)

18 return

and target wrench by comparing with all the embeddings in
Ze (Line 11). Specifically, we use the cosine distance to
compute the similarity between zt and each embedding in
Ze:

sim(zt, z
e
i ) =

zt
T zei

∥zei∥∥zt∥
(1)

where zei is the embedding of the i-th frame in D. The top-1
frame index in D is retrieved via maximum similarity:

i∗ = argmax
i

sim(zt, z
e
i ) (2)

The kinematic action, gripper action, and terminate flag of
the top-1 frame are used as the predicted kinematic action,
gripper action and terminate flag: at = aei∗ , gt = ge

i∗ , Tt =

T e
i∗ . The wrench of the next frame of the top-1 frame is used

as the target wrench for the next time step F̂t+1 = Fe
i∗+1.

B. Admittance Whole-Body Control

The current pose of the robot end-effector is denoted as
Pt = [Rt,pt] ∈ SE(3) where Rt ∈ SO(3) and pt ∈ R3

denote the rotation and translation, respectively. The target
end-effector pose for the next time step P̂t+1 ∈ SE(3)
is computed by P̂t+1 = Pt ◦ at where ◦ is the group
action of SE(3) (Line 14). However, this pose may not be
accurate due to the uncertainties caused by localization and
the insufficient accuracy caused by action prediction (Sec. I).
And small pose errors in contact-rich tasks may lead to large
contact wrenches and even mechanical damage. Therefore,
we leverage an admittance control scheme and control the
robot to track a pose that augments the original P̂t+1 with an
admittance term ∆Pt+1 = (∆Rt+1,∆pt+1) ∈ SE(3) (Line
15-16). This term compensates for the difference between
the wrench at the current time step measured by the force-
torque sensor Ft and the target wrench F̂t+1. It is computed
based on the wrench tracking error:

[
∆wt+1

∆pt+1

]
= Kp∆F +Ki

∫
∆Fdt+Kd

∂∆F
∂t

(3)

where ∆Rt+1 = exp
(
∆̂wt+1

)
; ∆F = F̂t+1 −Ft; Kp, Ki

and Kd are the proportional, integral, and differential terms,
respectively. To obtain the final ∆Pt+1 applied to the robot,
we discard the component parallel to at and only retain the
perpendicular component. This is equivalent to force-position
hybrid control in which the position weight and the force
weight are set to: 1 and 0 in the desired motion directions;
0 and 1 in the remaining directions.

With the admittance compensation, the augmented target
pose P̂t+1 is sent to a whole-body controller to generate
control commands for the mobile manipulator. The whole-



body controller is expressed as:

min
u

f =
1

2
uTQu+ cTu

s.t. Ju = ve

Au ≤ B

u ∈ [umin,umax]

(4)

u is the decision variable vector which includes velocity
control for the base and arm. Q incorporates joint velocity
costs. c = (0b, Ja

m) tries to maximize the manipulability
of the arm, where 0b is a zero vector and Ja

m is the
manipulability Jacobian of the arm [18]. J is the generalized
Jacobian of the base and arm. ve ∈ R6 is the desired spatial
velocity calculated by P̂t+1 and the current end-effector
pose. A and B implement the joint position constraints. The
optimization problem is a QP problem with variables u. We
use qpOASES [34] to solve the optimization problem in this
paper.

IV. EXPERIMENTS

We perform extensive real robot experiments on six
contact-rich tasks (Fig. 1). Through the experiments, we aim
to answer three questions. 1) Is force imitation effective
on improving task success rate? 2) Does force imitation
effectively reduce undesired contact wrenches and unstable
oscillations between the robot and the environment? 3) How
do different visual encoders perform in terms of action
prediction on real robot data?

A. Experiment Setup

1) System: The robot platform is shown in Fig. 3(a). It
consists of a differential-drive mobile base and a 7-DOF
Kinova Gen2 robot arm. Wheel encoder, IMU, and lidar are
used for the localization of the mobile base. A Robotiq 2F-
85 parallel-jaw gripper and a Robotiq FT 300-S force-torque
sensor are mounted on the end-effector of the arm.

2) Tasks: We perform experiments on six contact-rich
tasks in which the robot manipulates different articulated ob-
jects (Fig. 1). The articulation includes prismatic joints (e.g.,
drawers) and revolute joints (e.g., doors and the tap). Almost
all tasks are impossible to finish by static manipulations. All
tasks require the robot to grasp the object and stay in contact
with it during manipulation.

3) Expert Data Collection: We collected 30 expert
demonstrations for each task. The human expert carried the
end effector to collect expert trajectories (Fig. 3(b)). The
observation RGB image, the pose of the end effector, the
gripper action, and the wrench were recorded for each time
step. The pose of the end effector is tracked via an HTC
VIVE tracking system. The kinematic action for each frame
is computed as the relative transformation between the pose
of the next time step and the pose of the current time step.
The frames in which experts perform gripper actions have no
kinematic actions. That is, if this frame has been retrieved
in the rollout, the robot executes the gripper action and the
pose of the robot remains unchanged. The terminate flag is
1 for the last frame and 0 otherwise.

Camera
Tracker

Robot Arm

Mobile Base

Parallel-Jaw
Gripper

VIVE Base
Station

End-Effector

(a)
F/T Sensor

(b)

Fig. 3: Experiment. (a) The mobile manipulator used in the
experiment. (b) Expert trajectory collection.

4) Pipeline: All tasks can be divided into three phases:
approaching, grasping, and in-contact manipulation. The
robot starts at a pre-defined initial pose which is contact-
free. We randomize the end-effector initial pose before a
rollout starts. The robot first performs predicted actions to
approach the object. When the robot is commanded to close
the gripper, the robot enters the grasping phase. Finally, the
robot enters the in-contact manipulation phase. A rollout
terminates if either one of the three conditions is met: 1)
the termination flag Tt = 1; 2) the rollout time step exceeds
the maximum time step; 3) the force is larger than 40N or
the average force in the past 1s is larger than 30N. The last
condition ensures safety and avoids mechanical damage to
the object and the robot during rollouts. We consider a trial
successful if at least 80% of the task has been completed.
Each task is carried out 10 times for each method.

B. Experiment Results

We denote our visual-force imitation method as
MOMA-Force. We compare with three baseline methods.
The first baseline method is behavior cloning, denoted
as BC. We use the same visual encoder [33] to encode
observation images to representation vectors. We follow
[7] and train a multi-layer perceptron that takes as input
the representation vector and outputs the kinematic action,
gripper action and terminate flag. In particular, we train BC
in a single-task learning setting. We performed multi-task
learning but found the results not good. We also compare
with a variant of our method without force imitation, denoted
as MOMA-Force w/o FC, to validate the effectiveness
of force imitation. In addition, we test a variant of our
method without force imitation and rotation, i.e., the
action only contains translation at ∈ R3. We denote this
method as MOMA-Force w/o FC & Rot. Qualitative
and quantitative results are shown in Fig. 4 and Tab. I,
respectively.

1) Is force imitation effective in improving task success
rate? Our method MOMA-Force achieves the best average
success rate among all the comparing baseline methods.
Compared to BC, our method obtains a performance gain of
53.33% even though it performs multi-task learning while
BC performs single-task learning. BC struggles with the
compounding-error problem when approaching the object in
a few tasks. The grasping success rates in these tasks are low.
In other tasks where grasping is mostly successful, it cannot
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Fig. 4: Real Robot Experiments. (a) Open cabinet drawer. (b) Open drawer. (c) Open left door. (d) Open right door. (e)
Rotate tap. (f) Open washing machine.

TABLE I: Success Rates of Real Robot Experiments.

Method Open cabinet
drawer

Open drawer Open left
door

Open right
door

Rotate tap Open washing
machine

Average

BC (single-task) [7] 0% 20% 40% 0% 50% 10% 20.0%
MOMA-Force w/o FC & Rot 20% 50% 10% 0% 20% 0% 16.7%

MOMA-Force w/o FC 70% 70% 50% 60% 10% 10% 45.0%
MOMA-Force (Ours) 70% 70% 80% 60% 60% 100% 73.3%

maintain a small force, resulting in early termination without
task completion. Without force imitation, the success rate
of MOMA-Force w/o FC decreases by 28.3% on average.
This method mainly struggles with tasks involving translation
and rotation, e.g., opening the washing machine and rotating
the tap. In these tasks, similar to BC which also does not
have force imitation, it suffers from early termination due to
large forces.

Fig. 5: Results of Contact Wrenches. The force imitation
results in a reduction on contact wrench and variance.

The failure cases of MOMA-Force mainly attribute to
inaccurate action prediction. A typical failure mode is unsuc-
cessful grasping. In the expert trajectories, the observation
images between frames with small pose changes are very

TABLE II: Mean Squared Error of predicted actions and
wrenches.

Visual Encoder Translation Rotation Wrench
MVP [8] 0.19 0.17 0.21

CLIP [10] 0.16 0.17 0.15
iBOT [33] 0.10 0.11 0.10

similar. Therefore, in some cases, the visual encoder is not
able to distinguish and thus the robot cannot retrieve the best
expert action.

2) Is force imitation effective on decreasing the contact
wrench between the robot and the environment? We com-
pare the contact wrench of MOMA-Force and the baseline
methods. For all methods, we first compute the average abso-
lute contact wrenches and average wrench variances of all the
trials in which the grasping is successfully in the rollout for
each of the six tasks. We then average across tasks and report
the results in Fig. 5. Lower variances indicate more stable
contact. With force imitation, the average absolute contact
force and torque of MOMA-Force in x, y, and z-axes are all
smaller compared to those of the baseline methods without
force imitation. In addition, MOMA-Force has a smaller
force variance, indicating less oscillation and more stable
contact during the rollout.

3) How do different pre-trained visual encoders perform
on real-robot data? To compare the effectiveness of different
visual pre-trained models, we show the Mean Squared Error
(MSE) of using various state-of-the-art pre-trained models
as the visual encoder on the test set with 5-fold cross-
validation. Tab. II shows the result. MVP [8] is pre-trained
via a masked autoencoder from the Internet and egocentric
videos. CLIP [10] aims to align the image representation
with the paired text through contrastive learning. iBOT [33]
gives a good trade-off between masked autoencoder and



contrastive learning with an online tokenizer. Tab. II shows
that iBOT achieves the best performance, demonstrating its
advantages on our tasks. We note that a concurrent work [35]
gives a more sufficient study on visual representations for
robot tasks.

V. CONCLUSION

In this work, we present a novel visual-force imitation
learning method for real-world, contact-rich mobile manip-
ulation tasks. We extend a state-of-the-art visual imitation
learning method to support both kinematic action and tar-
get wrench prediction. We leverage admittance whole-body
control to enable robots to track the trajectory generated
by the action while regulating the wrench to follow the
expert wrench. We implement our method on a high DoF
mobile manipulator and perform multi-task learning on six
real-world contact-rich tasks. Our method achieves an aver-
age success rate of 73.3%, outperforming several baseline
methods without force imitation. In addition, the average
absolute contact wrench and wrench variance of our method
are smaller compared to all the baseline methods.
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APPENDIX

A. Expert Data Details

For each task, we collect 30 expert demonstrations as
described in Sec. IV-A. For each expert demonstration, we
first filtered out frames that are static. Following [14], the
expert action of a frame is computed as the state difference
between the frame and its next N -th frame. We set N = 1
first and then increment N such that either one of the
conditions is met: 1) the translation difference is larger than
1cm; 2) the rotation difference is larger than 0.1rad; 3) the
gripper status changes.

B. Experiment Details

For MOMA-Force and its variants, the maximum rollout
iteration is 200; for BC, the maximum iteration is 250. For
each trial, the robot is first controlled to move its end-effector
to a pre-defined initial pose. We then randomize the pose
with a uniform noise (δx, δy, δz, δα, δβ, δγ) in which δx,
δy, and δz are sampled from U(−2, 2)cm; δα, δβ, and δγ
are sampled from U(−0.06, 0.06)rad (Fig. 6). α, β, and γ
are the Euler angles. For all the tasks, the robot motion can
be divided into three phases: approaching, grasping, and in-
contact manipulation. In the approaching phase, as the robot
is close to the object, the mobile base is locked and the robot
only performs arm motion. After the robot grasps the object,
force control is activated and the base is unlocked, i.e., the
robot enters whole-body control mode. We use PID control to
regulate the wrench to the target wrench. The PID parameters
are shown in Tab. III. The derivative term ∂∆F/∂t in Eq.
3 is determined by the difference between the wrench errors
∆F in two consecutive time steps.

(a)

(b)

(c)

(d)

Fig. 6: Initialization. We show the initialize observation
images from three trials of (a) open left door, (b) open right
door, (c) open washing machine, and (d) rotate tap.

TABLE III: PID Parameters for Force Control.

Terms Fx Fy Fz Mx My Mz

Kp 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
Ki 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
Kd 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

C. Future Work

For future work, we plan to explore more on extending
our method to more complex scenarios including perturbed
backgrounds and novel objects. In addition, we find in the
experiment that grasping is important in terms of overall task
success rate and force control. While we use a parallel-jaw
gripper in this work, future work can also investigate using
more sophisticated grippers (e.g., robot hands) which can be
actively controlled during the course of rollouts.


