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Abstract

We present GR-2, a state-of-the-art generalist robot agent for versatile and generalizable
robot manipulation. GR-2 is first pre-trained on a vast number of Internet videos to capture
the dynamics of the world. This large-scale pre-training, involving 38 million video clips
and over 50 billion tokens, equips GR-2 with the ability to generalize across a wide range of
robotic tasks and environments during subsequent policy learning. Following this, GR-2 is
fine-tuned for both video generation and action prediction using robot trajectories. It exhibits
impressive multi-task learning capabilities, achieving an average success rate of 97.7%
across more than 100 tasks. Moreover, GR-2 demonstrates exceptional generalization to new,
previously unseen scenarios, including novel backgrounds, environments, objects, and tasks.
Notably, GR-2 scales effectively with model size, underscoring its potential for continued
growth and application. Project page: https://gr2-manipulation.github.io.

1 Introduction

The rise of high-capacity foundation models has contributed significantly to the success of language [1],
image [2], and video [3] processing tasks. These models are initially pre-trained on large-scale diverse datasets
and can subsequently be adapted to specific downstream tasks, making them versatile in application. This
paradigm allows these models to tackle a variety of tasks with a single generalist model when conditioned on
different inputs (e.g., language prompts [4]).

Following the foundation models established in other domains, our goal is to develop a foundation generalist
manipulation agent via large-scale pre-training on a comprehensive dataset. This would enable rapid adaptation
to a wide range of novel manipulation tasks via efficient fine-tuning. A generalist manipulation agent should
be capable of executing a wide range of manipulation skills. And more importantly, it should exhibit strong
performance in acquiring new skills and handling disturbances. Despite recent advances in AI and a shift
towards data-driven learning, collecting large-scale robot data remains a significant challenge due to inefficient
data collection methods and the limited scalability of real-robot systems. Research suggests that pre-training
on video generation can effectively transfer valuable knowledge from videos to policy learning, thus improving
the action prediction capability [5].

This report introduces GR-2, an evolution of our previous model [5], featuring improved performance and
expanded capabilities. To achieve this, we pre-train GR-2 on an extensive video dataset encompassing diverse
daily human activities across different contexts (household, outdoor, workplace, leisure, etc.). The primary
pre-training objective is straightforward: given a textual description and a video frame, the model predicts
subsequent frames based on the text. By mastering this auto-regressive prediction task, we anticipate the
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“A person is arranging 
flowers in a vase”

“The video shows two 
people playing a card 

game on a wooden table.”

“A man is trimming a 
tree branch with a pair 

of pruning shears.”

“putting chilli” “place rxbar chocolate 
into paper bowl”

“Move the pot and drop 
under two cans”

“press the toaster 
switch”

“push down the button to 
turn on the led light”

“open the oven”

“move any object from 
the right basket to the 

left basket”

Video-Language Pre-training Video-Language-Action Fine-tuning

Figure 1: Overview. GR-2 undegoes two stages of training: video generation pre-training and robot data
fine-tuning.

model to capture crucial temporal dynamics and semantic information which are essential for downstream
policy learning. Through fine-tuning on robot trajectories, GR-2 demonstrates the capability to learn multiple
manipulation tasks and adapt to novel scenarios, including novel backgrounds, environments, objects, and
tasks. Notably, GR-2 efficiently learns over 100 tasks from a dataset with only 5,000 trajectories (an average
of 50 trajectories per task). This significantly reduces the cost of acquiring new skills and adapting to new
environments in application. Furthermore, GR-2 excels in generalizing to unseen objects in an end-to-end
bin-picking setting, highlighting its strong potential for industrial application. Specifically, GR-2 builds upon
GR-1 [5] with several key improvements:

• GR-2 is pre-trained on 38 million text-video data (amounting to over 50 billion tokens), and is capable of
accomplishing over 100 manipulation tasks and performing bin-picking of over 100 objects. It significantly
scales up the pre-training data and number of tasks.

• We develop a novel model architecture that allows the knowledge gathered from pre-training to seamlessly
transfer to downstream fine-tuning in a lossless way. The model demonstrates strong scalability in handling
multiple tasks in challenging generalization settings.

• For real-robot deployment, we introduce a whole-body control (WBC) algorithm that incorporates trajectory
optimization and real-time motion tracking.

The remainder of this report is organized as follows. Sec. 2 provides a detailed description of GR-2, including
its model architecture, training process, and real-world deployment. Sec. 3 outlines our experiment setups
and results. Sec. 4 discusses the relation of GR-2 to existing works. Finally, Sec. 5 concludes the work and
discusses future directions.

2 Methods

We consider language-conditioned visual robot manipulation as our approach towards generalist robot ma-
nipulation, as language is one of the most flexible ways for a human to specify tasks for a robot. In this
setting, a single robot policy must solve multiple complex manipulation tasks by understanding different
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A person is loading dishes into a dishwasher

taking tea out of box

A hand is playing a game of peg solitaire, moving a 
blue peg to a new position on the board.

A person is preparing a dish by mixing ingredients in a bowl

A person is cleaning a watch with a cloth

Ego4D
1.2M videos

EIPC-KITCHENS
46k videos

Howto100M
36M videos

Kinetics-700
121k videos

SSV2
46k videos
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82k videos

Bridge
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Figure 2: Pre-training Dataset. We show sample videos and the verb distribution of the pre-training dataset
we curated. The y-axis of the bottom plot is the logarithm frequency of the top words.

unconstrained language instructions. Specifically, we want to train a universal policy π that takes as inputs a
language instruction l, a sequence of environment observation ot−h:t, and a sequence of robot states st−h:t.
The policy outputs an action trajectory at:t+k in an end-to-end manner:

at:t+k = π(l,ot−h:t, st−h:t), (1)

where h and k denote the length of the observation history and the action trajectory, respectively.

2.1 Model & Training

GR-2 is a language-conditioned GPT-style visual manipulation policy model (Fig. 1). The training undergoes
two stages: video generative pre-training and robot data fine-tuning. During the pre-training stage, we train
GR-2 on a curated large-scale video dataset. After that, we fine-tune GR-2 on robot data to predict action
trajectories and videos in tandem:

π(l,ot−h:t, st−h:t) → ot+1,at:t+k (2)

The inputs to GR-2 contain a language instruction, a sequence of video frames, and a sequence of robot states.

We use a frozen text encoder [6] to tokenize the language instruction. For the image frames in the video, we
employ a VQGAN [7] to convert each image into discrete tokens. The VQGAN is trained on a large corpus of
Internet data as well as in-domain robot data and is kept frozen during the training process. This approach
facilitates fast training and supports the generation of high-quality videos. Robot states contain the position
and rotation of the end-effector, as well as the binary gripper state. The states are encoded via linear layers,
which are trainable during the fine-tuning stage.

Our goal in the pre-training stage is to equip GR-2 with the capability to predict future videos. This enables
the model to develop a strong prior for predicting future events, thereby enhancing its ability to make accurate
action predictions. The model, built upon a GPT-style transformer, takes the tokenized text and image sequence
as inputs and outputs the discrete tokens of future images. Future images are decoded from these tokens
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Basic Settings

Simple

Distractor

Unseen Backgrounds Unseen Environments Unseen Manipulation

Figure 3: Multi-Task Learning. We perform experiments in two basic settings (Simple and Distractor) and
three generalization settings (Unseen Backgrounds, Unseen Environments, and Unseen Manipulation).

with the VQGAN decoder. We highlight that GR-2 is pre-trained on a significantly larger volume of video
data compared to previous works that utilize video pre-training. The pre-training data includes commonly
used public datasets of human activities, e.g., Howto100M [8], Ego4D [9], Something-Something V2 [10],
EPIC-KITCHENS [11], and Kinetics-700 [12]. To tailor the pre-training data for robot manipulation tasks,
we carefully establish a data processing pipeline that includes hand filtering [13] and re-captioning [14]. In
addition, we include publicly available robot datasets, e.g., RT-1 [15] and Bridge [16]. In total, the number of
video clips used for pre-training is 38 million, equivalent to approximately 50 billion tokens. The distribution
of human activities and video samples are illustrated in Fig. 2.

GR-2 can be seamlessly fine-tuned on robot data after large-scale pre-training. Unlike the videos in pre-training
data which only have a single camera view, robot data usually contain multiple views. GR-2 is designed to
gracefully handle multiple views. It takes as inputs the tokenized language instruction, the image sequences
captured from multiple views, and the robot state sequence. The outputs include future images of each view
and an action trajectory. The action trajectory is generated with a conditional VAE (cVAE) [17, 18, 19]. We
empirically found that generating action trajectories rather than single-step actions is crucial for both trajectory
smoothing and real-time performance.

2.2 Real-Robot System & Deployment

Our real-robot system consists of a 7-DoF Kinova Gen3 robot arm paired with a Robotiq 2F-85 gripper. We
utilize two cameras: a static head camera provides an overview of the workspace; another camera, which is
mounted on the end-effector, offers a close-up view of interactions between the gripper and the environment.

GR-2 generates an action trajectory in Cartesian space. To ensure that the robot arm accurately follows this
trajectory, we develop a Whole-Body Control (WBC) algorithm that employs trajectory optimization for
motion tracking [20]. The generated trajectory first undergoes optimization to improve its smoothness and
continuity. Subsequently, the WBC algorithm converts the Cartesian trajectory into low-level joint actions,
which are executed on the real robot at a frequency of 200 Hz. This process integrates collision constraints and
manipulability into the optimization framework.

3 Experiments

We perform large-scale real-robot experiments in two settings: multi-task learning (Fig. 3) and end-to-end
bin picking (Fig. 7). In multi-task learning, we aim to evaluate the capability of GR-2 on learning multiple
different tasks. We also evaluate in multiple challenging out-of-distribution settings to verify its generalization
capabilities (Fig. 3). In end-to-end bin picking, our goal is to evaluate GR-2 in a more industrial setting. In
this setting, the model is provided with a single text prompt and is required to perform the bin-picking task
within an object cluster. Finally, we present a benchmark comparison with state-of-the-art methods on the
challenging CALVIN benchmark [21]. If not specified otherwise, the default GR-2 model contains 230M
parameters, of which 95M are trainable. We also show model scaling results in Sec 3.5.
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“pick up the red mug 
from the rack”

“close the oven”

“close the drawer”

“pick up the red 
bowl from the dish 

tub”

“uncap the white mug”

“place the picked 
object into the 

toaster”

“press the toaster 
switch”

“open the drawer”

“place the picked 
object in the white 

box”

“press the coffee 
machine button”

“place the picked 
object on the spice 

rack”

“place the picked 
object into the 

drawer”

“pour the black 
seasoning powder in 

the red bowl”

“pick up the 
starfruit from the 

fruit plate”

“pick up the white 
spam can from inside 

the drawer”

“pick up the red 
shirt from the 
laundry basket”

“pick up the tea bag 
from the tray”

“pick up the potato 
from the cutting 

board”

“place the picked 
object in the 
storage box”

“pick up the 
mandarin from the 

red plate”

Figure 4: Task Examples. GR-2 is able to perform more than 100 tasks of 8 skills including picking, placing,
uncapping, capping, opening, closing, pressing, and pouring.

3.1 Real-World Multi-Task Learning

We collected human demonstrations of 105 table-top tasks via teleoperation. These tasks cover 8 different
skills, i.e., picking, placing, uncapping, capping, opening, closing, pressing, and pouring (Fig. 4). In total,
we collected about 40,000 trajectories, with an average of 400 trajectories per task. Based on the model
pre-trained on the curated large-scale video dataset, we further fine-tune GR-2 using this dataset. Additionally,
to evaluate the performance under the condition of data scarcity, we train GR-2 using approximately 1/8 of the
full dataset, which corresponds to around 50 trajectories per task.

To enable better generalization to unseen scenarios, we perform data augmentation during fine-tuning by adding
new objects into the scene and/or changing the background. To insert new objects into the scene, a diffusion
model [22] is trained with a combination of a self-collected object dataset and the Open Images dataset [23].
This model enables us to insert a specific object in a designated region. For changing the background, we
utilize Segment Anything Model (SAM) [24] to extract regions corresponding to the background. Finally, we
employ a video generation model [25] that conditions on the original video and the inpainted frame to produce
an augmented video while preserving the robot motion.

Basic Settings. We first evaluate GR-2 in two basic settings: Simple and Distractor. In Simple, the test
environment is set similar to the training data. In Distractor, we add a few distractors to the scene. This
becomes challenging for the reason that 1) distractors, especially those that share a similar color and/or shape
with the target object, may confuse the robot and 2) the environment becomes more cluttered and sometimes
requires collision avoidance to accomplish a task.

Generalization Settings. To further investigate the capability of GR-2 in unseen scenarios, we introduce three
more challenging settings: Unseen Backgrounds, Unseen Environments, and Unseen Manipulation (Fig. 3).
In Unseen Backgrounds, we change the background by adding two unseen tablecloths that are very different
from the original plain background in the training dataset as shown in Fig 3. For Unseen Environments, we
evaluate in two unseen kitchen environments. Besides changed backgrounds, these environments also contain
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pour the black seasoning powder in the red bowl

pick up the dragon fruit from the fruit plate

place the picked object on the tray

cap the white mug

close the drawer

open the oven

press the toaster switch

pick up the green seasoning bottle from the spice rack

place the picked object on the table

Figure 5: Qualitative Results of Multi-Task Learning. We show end-to-end rollouts of different tasks.
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Figure 6: Success Rates of Multi-Task Learning. We show the success rates of four models across different
evaluation settings. 400 (50) indicates that the model is trained on about 400 (50) trajectories per task on
average. GR-2 w/ DA indicates that we perform data augmentation on the training data. See Sec. 3.1 for more
details.

(c) (d) (e) (f)

(b)(a)

Figure 7: End-to-End Bin Picking. (a) Experiment setting. (b) Objects used in the experiments. We evaluate
in four different settings: (c) Seen, (d) Unseen, (e) Cluttered Seen, and (f) Cluttered Unseen. Seen (Unseen)
indicates that the objects are seen (unseen) during training. The two cluttered settings (e) and (f) have more
objects compared to the training setting.

scene-related distractors. Finally, for Unseen Manipulation, we instruct the robot to perform manipulations
that are unseen in the robot training data. It includes manipulating objects of unseen categories and unseen
object instances. This setting is extremely challenging given the robot has never seen these objects in the
training data. And the unseen instructions for manipulating objects of unseen categories further increase the
difficulties.

Results. Qualitative results are shown in Fig. 5. Quantitative results are shown in Fig. 6. GR-2 achieves a
success rate of 97.7% on 105 tasks in the Simple setting, showcasing its powerful multi-task learning capability.
It can also robustly handle distractors and attend to target objects correctly. It improves the success rates
of GR-1 in all settings. Notably, it achieves success rates of 71.4% and 71.7% in Unseen Backgrounds and
Unseen Environments, respectively, doubling those of GR-1. By introducing data augmentation, GR-2 w/ DA
is able to achieve even more competitive generalization performance, obtaining a success rate of 87.0% in
Unseen Environments and an average success rate of 74.7% across all three generalization settings. When
trained with only 50 trajectories per task, GR-2 is able to achieve a success rate of 73.9% in the Simple
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setting and outperforms GR-1 in all three generalization settings. This showcases the strong potential of GR-2
in efficiently adapting to new tasks and environments. Finally, GR-2 achieves a success rate of 55.8% in
Unseen Manipulation. Typical failure cases include 1) failing to pick unseen objects of novel shapes and 2)
mistakenly selecting the wrong object when instructed to pick an unseen one. Moving forward, we plan to
explore techniques to further improve generalization for unseen manipulation tasks, including handling novel
objects and executing new skills.

3.2 End-to-End Bin Picking of Different Objects

To further assess the capabilities of GR-2 in an industrial context, we conduct large-scale experiments on
end-to-end bin picking. The experiment setup contains a source and a target basket (Fig. 7(a)). The robot is
tasked with picking objects from the source basket and placing them into the target basket in a seamless and
end-to-end manner. In total, we collected about 94,000 pick-and-place trajectories of 55 objects for training.
The language instruction is very simple:

move any object from the right basket to the left basket.

Settings. We evaluate GR-2 in four different settings: Seen, Unseen, Cluttered Seen, and Cluttered Unseen
(Fig. 7(c)(d)(e)(f)). In total, we perform experiments on 122 objects, among which 55 of them are seen and the
other 67 are unseen during training (Fig. 7(b)). We transport 5-9 seen (unseen) objects from the source basket
to the target one in the Seen (Unseen) setting. The number of objects in the source basket at the beginning
is similar to those in the training data. For the Cluttered Seen (Unseen) setting, we increase the number of
objects by twofold, i.e., including 12-17 seen (unseen) objects in the source basket. And thus the two cluttered
settings can be considered as unseen settings regardless of whether the objects are seen or unseen.

Figure 9: Success Rates of End-to-End Bin Pick-
ing.

Results. Qualitative results are shown in Fig. 8. Quan-
titative results are shown in Fig. 9. GR-2 outperforms
GR-1 by a large margin, improving the average success
rate from 33.3% to 79.0%. GR-1 is not able to handle the
Unseen and the two cluttered settings. The performance
degrades largely from that of the Seen setting. On the
other hand, we highlight that the success rates of GR-2 in
the Unseen and the two cluttered settings are comparable
to that of the Seen setting. These results showcase that
GR-2 possesses powerful generalization capabilities for
unseen objects and unseen scenarios, indicating great po-
tential for industrial application. GR-2 is able to handle
objects that may be challenging for model-based methods,
including transparent, deformable, and reflective objects.
See Fig. 8 for some examples.

3.3 CALVIN Benchmark

CALVIN is a simulated benchmark which targets long-horizon language-conditioned robot manipulation [21].
It includes 34 tasks and incorporates unconstrained language instructions. We perform experiments on the
ABCD-D split which includes more than 20,000 expert demonstrations of 34 different manipulation tasks.
Following [21], we perform evaluation on 1,000 unique sequences of instruction chains. For each sequence,
GR-2 is instructed to perform 5 tasks in a row.

Fig. 10 shows the success rates of completing 1, 2, 3, 4, and 5 tasks in a row and the average length. The
average length is a comprehensive evaluation metric which shows the average number of tasks the robot is
able to accomplish in a sequence across the 1,000 evaluated sequences. We compare with five state-of-the-art
baseline methods: RT-1 [15], MT-ACT [26], HULC [27], RoboFlamingo [28], and GR-1 [5]. RT-1 [15] is a
language-conditioned multi-task policy that encodes the language condition via FiLM layers. MT-ACT [26]
similarly uses FiLM layers to inject the language condition and leverages an action-chunking transformer to
address the multi-modality in the action data. HULC [27] is a hierarchical method which first predicts a plan
in a latent space and uses the predicted plan for generating actions. RoboFlamingo [28] fine-tunes a large
pre-trained vision-language model on robotics data to perform language-conditioned manipulation. GR-2
establishes a new state of the art. It outperforms all the comparing baseline methods in terms of success rates
and the average length. It improves the success rate of GR-1 from 94.9% to 98.6% for 1 task and from 73.1%
to 85.9% for 5 tasks. The average length is increased from 4.21 to 4.64.
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Figure 8: Qualitative Results of End-to-End Bin Picking. We show end-to-end picking of different objects,
including objects that are transparent, deformable, or reflective.
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Figure 10: CALVIN Benchmark Results. We show the success rates of completing 1, 2, 3, 4, and 5 tasks
in a row and the average length. The average length shows the average number of tasks the robot is able to
accomplish when instructed to perform 5 tasks in a row.

(a) (b) (c) (d)

Figure 11: Scaling Experiments. We show the validation loss of video generation during pre-training on the
validation sets of (a) Ego4D [9], (b) RT-1 [15], and (c) our robot data. (d) shows success rates in real-robot
experiments. See Sec. 3.5 for more details.

3.4 Autoregressive Video Generation

GR-2 is pre-trained on a vast number of diverse videos, enabling it to predict future states within the image
space. As a result, this video generation capability can effectively act as a planner for action generation. That
is, after generating the visual trajectory, an action trajectory can be subsequently inferred based on the visual
trajectory. To further investigate the effectiveness of this design, we visualize the video prediction result and
compare it with the corresponding real rollout. We show the visualization of rollouts from multi-task learning
(Fig. 12 13), end-to-end bin picking (Fig. 14 15), and CALVIN (Fig. 16 17).

GR-2 is able to generate high-quality videos alongside actions. We highlight that the generated videos align
with the real-world rollouts faithfully. This indicates that the predicted action is trying to "replay" the trajectory
in the predicted video. This property brings about a simple approach to continuously improving action
prediction by iteratively improving video generation.

3.5 Scaling

We investigate how scaling up the model size can help GR-2 in pre-training and fine-tuning. In particular,
we pre-train GR-2 of four sizes. The number of trainable parameters is 30M (GR-2-S), 95M (GR-2-B),
312M (GR-2-L), and 719M (GR-2-XL), respectively. The validation loss of video prediction is shown in
Fig. 11(a)(b)(c). The validation loss decreases with the increase of the model size, showing scalability in terms
of video generation. We incorporate videos of in-domain robot data during the pre-training stage and keep the
pre-trained parameters frozen while fine-tuning on robot trajectories. After fine-tuning, we evaluate different
models on a subset of settings in Sec. 3.1. Results are shown in Fig. 11(d). The success rate scales well with
the model size. This result highlights the strong potential of GR-2 for continuous performance improvement
through increasing the model size.
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pick up the yellow mustard bottle from the spice rack
GT

Pr
ed

place the picked object on the table

GT
Pr
ed

open the oven

GT
Pr
ed

press the toaster switch

GT
Pr
ed

open the drawer

GT
Pr
ed

Figure 12: Video Prediction (Pred) and Ground-Truth (GT) Rollouts of Multi-Task Learning (I). We show
autoregressive video predictions alongside the corresponding ground-truth videos captured from real-world
rollouts.
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pick up the white mug from the tray

GT
Pr
ed

pick up the red bowl from the table
GT

Pr
ed

place the picked object into the oven

GT
Pr
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place the picked object under the coffee spout

GT
Pr
ed

uncap the white mug
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ed

Figure 13: Video Prediction (Pred) and Ground-Truth (GT) Rollouts of Multi-Task Learning (II). We
show autoregressive video predictions alongside the corresponding ground-truth videos captured from real-
world rollouts.
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Figure 14: Video Prediction (Pred) and Ground-Truth (GT) Rollouts of End-to-End Bin Picking (I).
We show autoregressive video predictions alongside the corresponding ground-truth videos captured from
real-world rollouts. Both the views from the hand camera and the static head camera are shown.
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Figure 15: Video Prediction (Pred) and Ground-Truth (GT) Rollouts of End-to-End Bin Picking (II).
We show autoregressive video predictions alongside the corresponding ground-truth videos captured from
real-world rollouts. Both the views from the hand camera and the static head camera are shown.
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go push the blue block left
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ed

lift the pink block from the sliding cabinet
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push the handle to close the drawer

GT
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ed

Figure 16: Video Prediction (Pred) and Ground-Truth (GT) Rollouts of CALVIN Benchmark (I). We
show autoregressive video predictions alongside the corresponding ground-truth videos captured from the
rollouts. Both the views from the hand camera and the static camera are shown.
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slide the block that it falls into the drawer
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Pr
ed

GT
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use the switch to turn off the light bulb
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ed

GT
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ed
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ed

take the blue block and rotate it to the right

Figure 17: Video Prediction (Pred) and Ground-Truth (GT) Rollouts of CALVIN Benchmark (II). We
show autoregressive video predictions alongside the corresponding ground-truth videos captured from the
rollouts. Both the views from the hand camera and the static camera are shown.
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4 Related Work

Generalist Robot Manipulation. A long-standing goal in robotics research is to develop a generalist robot
agent that is able to accomplish a wide range of tasks in diverse environments. One of the most flexible
ways to specify tasks is through natural languages [15, 29, 5, 28, 30, 31, 27, 26, 32, 33, 34, 35, 36, 37].
Pioneering studies explored using large-scale robot datasets to learn generalist policies which are able to
accomplish a variety of tasks [32, 15, 29, 38]. To achieve generalization in unseen scenarios, some existing
works combined data from other domains with robot data in policy training [39, 5, 29]. Recently, a number
of works proposed to fine-tune a vision-language model which has been pre-trained on Internet-scaled data
to obtain robust and generalizable robot policies [28, 29, 40]. In addition, some recent works resort to 3D
information [41, 42, 43, 44] to achieve efficient policy learning by leveraging the geometry information
contained in 3D data. Another line of works proposed to condition the policy with a goal image instead of
a language [45, 46, 47, 48, 49]. And previous methods have also explored aligning the latent space of goal
images and languages to enable both goal image condition and language condition during training [27, 31, 33].
GR-2 is a language-conditioned generalist robot manipulation agent. Unlike most previous works, it is first
pre-trained on video generation with Internet-scale video datasets and then fine-tuned on robot data to predict
both actions and videos.

Robot Learning with Pre-training. Inspired by the success in the field of vision [50] and languages [51],
pre-training has gained increasing popularity in robot learning as it enhances the generalization capabilities
and robustness of policies [52, 53, 54, 55, 56, 57, 58, 40, 5]. A popular approach is to first learn useful
visual representations via masked modeling [53, 59, 60, 52] or contrastive learning [54, 61, 62, 63]. The
learned representations are then used for downstream policy learning. RPT [55] performed self-supervised
pre-training and showcased that pre-training with large robot datasets consistently surpasses training from
scratch. In reinforcement learning (RL), previous works proposed to first train a world model to obtain latent
state representations and then use them to train an RL agent [64, 56, 59]. VIPER [65] trained a video prediction
model with expert data and utilized it as an action-free reward signal to train RL policies. Some model-based
methods trained a video prediction model and combined it with an inverse dynamics model [66, 58, 67] or
model predictive control [68, 69] to perform robot manipulation. VPT [70] first trained an inverse dynamics
model with a small amount of data labeled with actions and used it to label a large amount of unlabeled data
gathered from the web for policy training in Minecraft. Recent works trained policies based on models that have
been pre-trained on Internet-scale data via end-to-end fine-tuning [28], co-training with robot data [29, 40], or a
two-stream architecture [71]. The policy can make use of the web-scale knowledge obtained from pre-training
in policy learning and showcases powerful generalization capabilities in unseen scenarios. Inspired by these
works, we propose to leverage large-scale text-video data to perform video generative pre-training in our
previous work GR-1 [5]. The motivation is that we believe videos contain valuable information on the dynamics
of the environment and how the environment should evolve according to the text description. This information
can facilitate action prediction during downstream policy learning. In comparison to GR-1 [5], GR-2 scales
the number of pre-training videos from 0.8 million to 38 million, boosting the generalization capabilities in
various unseen scenarios. In addition, the innovative model architecture facilitates more seamless knowledge
transfer between pre-training and fine-tuning, leading to a policy that is more generalizable and robust.

5 Conclusions

We present GR-2, a generative robotic video-language-action model that is able to effectively learn a wide
variety of tasks and generalize to unseen scenarios. GR-2 is first pre-trained on video generation with
38 million Internet videos. It is then fine-tuned on robot data to predict action trajectories and videos in
tandem. It showcases strong multi-task learning capabilities, successfully completing more than 100 different
manipulation tasks in the real world with a high success rate. It generalizes well to novel scenarios, including
unseen backgrounds, environments, objects, and tasks. Moreover, GR-2 can perform bin-picking manipulation
with over 100 objects in an end-to-end manner and handle unseen objects with remarkable robustness. We
observe a strong correlation between the generated video and the action predicted alongside. In the future, we
plan to enhance the generalization capabilities and robustness of action prediction, with a particular focus on
improving the performance on unseen manipulation.
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