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World Model-based Perception for Visual Legged Locomotion

Hang Lai'f, Jiahang Cao!, Jiafeng Xu?, Hongtao Wu?, Yunfeng Lin'f, Tao Kong?, Yong Yu!, Weinan Zhang

Abstract— Legged locomotion over various terrains is chal-
lenging and requires precise perception of the robot and its
surroundings from both proprioception and vision. However,
learning directly from high-dimensional visual input is often
data-inefficient and intricate. To address this issue, traditional
methods attempt to learn a teacher policy with access to
privileged information first and then learn a student policy to
imitate the teacher’s behavior with visual input. Despite some
progress, this imitation framework prevents the student policy
from achieving optimal performance due to the information gap
between inputs. Furthermore, the learning process is unnatural
since animals intuitively learn to traverse different terrains
based on their understanding of the world without privileged
knowledge. Inspired by this natural ability, we propose a simple
yet effective method, World Model-based Perception (WMP),
which builds a world model of the environment and learns a
policy based on the world model. We illustrate that though
completely trained in simulation, the world model can make
accurate predictions of real-world trajectories, thus providing
informative signals for the policy controller. Extensive simulated
and real-world experiments demonstrate that WMP outper-
forms state-of-the-art baselines in traversability and robustness.
We will open-source our code to facilitate reproduction.

I. INTRODUCTION

Reinforcement Learning (RL) has recently achieved re-
markable success in legged locomotion across diverse ter-
rains by training a policy in physical simulation and then
transferring it to the real world (i.e., sim-to-real transfer) [1],
[2]. Typically, such RL policy takes the proprioception (e.g.,
positions and velocities of joints) or visual image as input and
outputs the desired position or effort control for each actuated
joint [3], [4]. Previous literature has shown that a blind
policy with only proprioceptive input can traverse terrains
like slopes and stairs [5]-[9], but fails in more challenging
ones like gaps or pits [10]-[12], where a robot must perceive
such terrain in advance; therefore, visual image perception
is indispensable [13], [14].

However, directly learning a policy with dense pixel
input using reward signals is extremely data-inefficient [15].
Moreover, with a forward-facing camera, a policy needs to
remember past perceptions to anticipate the terrain under the
robot’s feet [10], which poses an additional challenge for
policy learning. To facilitate policy training, the privileged
learning framework [16] is proposed, which decomposes the
training process into two phases. First, a teacher policy is
trained with access to low-dimensional privileged informa-
tion like the scandots around the robot, which is usually
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Fig. 1: Scandots (Left) and the corresponding depth images (Right).
Top: Sparse scandots'can not distinguish the precise distance to the
boundaries (indicated in green), leading to a collision with the left
barrier. Bottom: Scandots can not represent off-ground obstacles.
In contrast, depth images can represent these terrains well.

inaccessible in the real world. Afterward, a student policy
is trained to mimic the teacher’s actions based on the seen
images via ConvNet-RNN architecture [10]-[12].

Privileged learning has been widely exploited and exhibits
traversability over multiple terrains in quadrupedal locomo-
tion [5], [10], [11], [13], but it still has some limitations.
Firstly, since the student cannot recover the teacher’s behav-
ior perfectly due to generalization error [17], the performance
of student policy tends to lag behind the teacher’s. The
performance discrepancy is further magnified when an infor-
mation gap exists between privileged information and images
[18]. Secondly, the teacher policy needs to access different
types of extra information, which is labor-intensive to design.
For example, Cheng et al. [11] choose the terrain scandots
as the privileged information, which can not be generalized
to terrains that require precise boundary distinction, like Tilt,
or ones with off-ground obstacles, like Crawl, as illustrated
in Figure 1. Besides, Zhuang et al. [12] use the geometry of
obstacles as privileged information, which is terrain-relevant.
Therefore, they train different teachers separately for each
terrain. These limitations may hinder its broader applications
in more complex scenarios.

In contrast, animals naturally learn to traverse unstructured
fields and can make good decisions in unfamiliar situations
with limited perception. One hypothesis is that animals,
especially humans, build a mental model that holds their

IThe scandots are no denser than the terrain mesh vertices, which have
a horizontal resolution of 10cm in our simulation setting.
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understanding of the real world [19], [20]. When performing
actions, it helps perceive past information and predict future
sensory data [21]-[24]. Inspired by these findings, model-
based RL (MBRL) strives to learn a world model from
collected data and derives a policy from it [25]. With the
help of such models, MBRL has made immense progress in
a variety of tasks with limited data, ranging from simulated
robot control [26], [27] to playing video games [20], [28],
[29]. However, the application of world models in vision-
based legged locomotion is still lacking.

This paper investigates whether visual legged locomotion
can benefit from world model learning. To this end, we
present World Model-based Perception (WMP), a novel end-
to-end framework combining advanced MBRL with sim-to-
real transfer. Specifically, WMP trains a world model in
simulations to predict future perceptions using past ones and
learns a policy given the abstract description extracted from
the world model. Though trained entirely using simulated
data, the world model can still predict real-world perception
well. By leveraging the learned model, WMP circumvents the
limitations of privileged learning and naturally compresses
a series of high-dimensional perceptions into a meaningful
representation, contributing to decision-making.

We compare WMP to state-of-the-art baselines over multi-
ple terrains, including terrains like Slope and Stair and more
difficult ones like Gap and Crawl. In simulation compari-
son, WMP obtains near-optimal rewards compared with the
teacher policy, surpassing the student policy by a pronounced
margin. Subsequently, we evaluate WMP and baselines on a
real Unitree Al robot, where WMP successfully traverses
the tested terrains with increased difficulty, verifying the
advantage of world model learning in robot control. For
example, WMP can traverse Gap with 85cm (about 2.1x
robot length), Climb with 55cm (about 2.2x robot height),
and Crawl with 22cm (about 0.8x robot height), achieving the
best traversal performance on the A1 robot. To the best of our
knowledge, this is the first work that deals with challenging
vision-based legged locomotion via world modeling, which
could become a new paradigm for robot control tasks.

II. RELATED WORK

RL for Legged Locomotion. Reinforcement learning (RL)
has emerged as a promising method for legged locomo-
tion [1]-[4], [30]. Previous literature has shown that policies
with only proprioception as input can go through multiple
terrains in the real world by leveraging biologically inspired
rewards design [4], [5], [16], domain randomization [3], [7],
[31], and curriculum learning [8], [32]. However, without
visual perception, it can be extremely difficult for these
”blind” robots to tackle more complex terrains [12], [13].
To incorporate visual information, the privileged learning
framework is developed [10]-[12], where a teacher policy
trained with access to privileged information is used to guide
a vision-based student policy. However, the design of privi-
leged information and the performance gap between teacher
and student remain critical limitations of these methods [6],
[33]. Besides, one concurrent work proposes to estimate the

scandots using past observations [34], which also suffers
from the limitation of scandots inevitably. In contrast, Our
method presents a more general and effective framework to
incorporate visual images without these limitations.

Model-based RL. Model-based reinforcement learning
(MBRL) approaches have shown promise for learning com-
plex robot control policies by learning a dynamics model
of the environment to help decision-making [25], [27], [35],
[36]. In MBRL, much effort has been devoted to learning
an accurate model in partially observable and pixel-input
environments [20], [26], [28], [37]. As a prominent example,
Dreamer-V3 [29] achieves impressive performance across
diverse domains by learning a world model in a com-
pact latent space, namely the Recurrent State-Space Model
(RSSM). Inspired by the success of Dreamer, RSSM has
also been widely exploited in robot control tasks, ranging
from robotic manipulation [38]-[40] to blind quadrupedal
locomotion [41]. Our work also builds upon the RSSM world
model architecture, which can seamlessly take advantage of
innovations in MBRL literature and push the boundaries of
its application in legged locomotion with visual input.

III. PRELIMINARIES

We formulate legged locomotion as a Partially Observable
Markov Decision Process (POMDP) defined by the tuple
(S,0,A,T,r,~), where S, O, and A are the state, observa-
tion, and action spaces, respectively. T'(s¢4+1 | S, a¢) is the
transition density of state s; given action a;, and the reward
function is denoted as (s, ar). v € (0,1) is a discount
factor. At each timestep ¢, only the partial observation o, € O
can be observed instead of s; due to the limitation of sensors.
The goal of reinforcement learning (RL) is to find the optimal
policy 7*: O — A that maximizes the expected return (sum
of discounted rewards):

oo
= arg max By, ~7(|ssa0),ai~m (o) [Z ’Ytr(St, at)} .

t=0
(D
Specifically, in the vision-based legged locomotion, o; con-
sists of the proprioception of and the depth image d;. In
addition to o;, the underlying state s; also contains the
privileged information s}, which can only be accessed in
the simulator:

O .= (Oi)vdt)v (2)
se:= (o, 88™). 3)
IV. METHOD

This section introduces World Model-based Perception
(WMP), an end-to-end framework that utilizes world models
to extract information from high-dimensional sensor input.
Unlike the two-stage training process used in privileged
learning, WMP only adopts one stage to learn the world
model and policy simultaneously.
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Fig. 2: Illustration of the WMP framework. The world model runs at a lower frequency than policy, with an update interval of k timesteps.

A. World Model Learning

Following previous works [29], [37], we adopt a Recurrent
State-Space Model (RSSM) variant as our world model
architecture. Considering the computational cost of acquiring
depth images in the simulator and the time cost of running
RSSM on board, we modify the original RSSM by running
the world model with a lower frequency than the policy. As
Figure 2 shows, the world model updates the recurrent state
hy every k timesteps. Formally, the RSSM in our method
consists of four components parameterized by ¢:

Recurrent model: he = fo(hi—k, 2t—k, Gt—k:t—1)
Encoder: 2~ %(' | he, o) (4)
Dynamic predictor: 2, ~ pg(- | he)

Decoder: 6r ~ (- | hy,2t).

To be more specific, the recurrent model f, operates in the
low-dimensional latent space h and predicts the deterministic
recurrent state h; based on the previous h;_g, sequence of
action a;_x.+—1, and the previous stochastic state z;_j. From
the recurrent state h;, the RSSM computes two distributions
over stochastic states z;. The posterior state z; incorporates
information from observation o; through the encoder g4. The
prior state Z; aims to predict the posterior without access
to o, enabling the model to anticipate future dynamics
without ground-truth observation. The decoder generates the
estimated observation 6;, making it possible to reconstruct
the high-dimensional observation. The recurrent model is
implemented using the GRU (Gated Recurrent Unit) [42]
network, and the encoder and decoder utilize the convo-
Iutional neural network (CNN) structure for depth image
d; and multi-layer perceptions (MLP) for proprioception
observations of.

Similar to Hafner et al. [29], we optimize these four
ingredients jointly by minimizing the loss over trajectories
of length L:

L
£(6) = By, | D = upglorlzis he)

t=n-k

&)
+ BKL[gs (- | has 00)llpo- | h0)]]

where n is a non-negative integer, and /3 is a hyperparameter.
The first term in Eq. (5) is the reconstruction loss, which
encourages the posterior z; to contain sufficient information
about o;, while the second KL term regularizes the prior
and posterior to approximate each other, allowing open-loop
prediction of future observations based on current h; and
future actions. Please refer to the original Dreamer literature
[26], [28], [29] for more details about RSSM training.

B. Policy Learning

Policy learning for vision-based locomotion is non-trivial
due to the partial observability, as described in Section III.
However, the recurrent state h; in a well-trained world model
encapsulates sufficient information for future prediction, akin
to the underlying Markovian state s;. Building on this
insight, we train a policy that incorporates h; as input:

Atyi ~ To ( | ofﬂ-,sg(ht)), Vi e [0,k — 1], (6)

where sg(-) represents the stop-gradient operator. We employ
the asymmetric actor-critic framework [33], where the critic
can access the privileged information st™:

v(se4) ~ V(- | 0f+i7sg(ht)7sffi)7 Vie[0,k—1]. (7)

We find that the recurrent state h; plays an essential role in
critic learning since the scandots in sf" can not represent
some types of terrains like Tilt and Crawl, as discussed in
Section I.

The actor and critic are trained using the data collected
in the simulator via the PPO (Proximal Policy Optimization)
algorithm [43]. Note that we do not utilize the world model
to generate rollout data for policy training as in previous
MBRL methods [27], [41]. Because the world model is
trained using simulated data, which means it can not generate
more accurate data than the simulator, and sampling data
in the simulator is efficient enough. Training world models
with real-world data is a possible way to make models more
accurate, which we leave as future work.

C. Training Details

Environment. We implement our method and baselines
based upon the legged_gym codebase [32], which lever-
ages the Isaac Gym simulator [44] to support simulation

Manuscript 1012 submitted to 2025 IEEE International Conference on
Robotics and Automation (ICRA). Received September 16, 2024.



CONFIDENTIAL. Limited circulation. For review only.

TABLE I: Comparison results on different terrains in simulation. Results are averaged over 100 trajectories with different difficulties.
Bold numbers indicate the best scores among algorithms excluding Teacher. N/A means that the method is not applicable to the terrain.

Slope (0-36°) Stair (5-21cm)

Gap (0-90cm) Climb (0-54cm) Tilt (32-28cm) Crawl (35-21cm)

WMP (ours) 36.55+0.82 35.06+3.54 3237+824 3464£299 34.73+3.13 36.60+0.33
Teacher 36.70 £ 1.79 35.07+£0.68 32.80+£7.06 35.32+3.33 N/A N/A
Return 1 Student 36.31 £1.35 34.93+£1.32 27.07+12.38 33.42+5.66 N/A N/A
Blind 33.96 £ 2.58 23.56 £12.98  9.80£9.51 14.114+£13.27  3.944+2.28 8.92 £7.65
WMP w/o Prop | 36.07 £ 0.27 34.62 £ 3.51 30.73£9.93 34671195 30.78+7.22 36.41 £1.76
WMP (ours) |0.008+0.006 0.013+0.010 0.26+0.13 0.13£0.08 0.02+0.01 0.006 -+ 0.002
Tracking Teacher 0.007 £0.010 0.012£0.005 0.23+£0.21 0.09 £0.07 N/A N/A
Error | Student 0.008 £0.004 0.015+£0.006  0.35=£0.28 0.16 £ 0.07 N/A N/A
Blind 0.019 £0.011  0.033 £0.021 0.33£0.19 0.26 £0.07 0.08 £0.06 0.051 £ 0.022
WMP w/o Prop | 0.009+£0.003 0.017+0.027 0.28 £0.18 0.14 £0.09 0.08 £0.10 0.013 £ 0.006

of thousands of robots in parallel. Specifically, We create
4096 Unitree Al [45] instances on six types of terrains,
including Slope, Stair, Gap, Climb, Crawl, and Tilt, each
with varying difficulty levels, as listed in Table I. We adopt
the same terrain curriculum as in Rudin et al. [32]. All robots
are initialized to different terrains with the lowest difficulty
in a certain proportion. The robot is moved to a higher
level of difficulty once it passes the borders of its terrain or
assigned to a lower level if it moves by less than half of the
distance required by its target velocity. Robots take actions
at a frequency of 50 Hz, i.e., 0.02s per timestep. Depth
images are computed every k timesteps and sent to the policy
with 100ms latency to facilitate sim-to-real transfer. We also
randomize the physical parameters to further improve the
policy’s robustness as in Cheng et al. [11].

State and Action Space. Precisely, the proprioception obser-
vation of € R*® consists of base angular velocities, gravity
projection, commands, positions and velocities of joints, and
last action a;_1. The privileged information s} contains
scandots, foot contact forces, and randomized physical pa-
rameters. d; € R64*64 is the egocentric depth image with
58° x 58° field of view. The action a; € R'? specifies the
joints’ target positions: ¢4 = Qstand + ¢, Where gsgand 1S
the default joint positions when standing. The torques 7 are
calculated through a PD controller:

T=Ky(qa—q)+ Kq(da—q), (®)

where ¢ and ¢ are the joints’ current positions and velocities,
respectively. The target joint velocities ¢4 are set to O and
(K, Kg4) are the parameters of the PD controller.

Reward Function. The robot is trained to track a 3-dim
command: (v§™?, 054 w™4). To achieve this, we adopt a
suite of reward functions similar to Cheng et al. [11]. The
main difference is that they manually select waypoints along
a preset trajectory and compute the velocity-tracking reward
based on the direction to the next waypoint. on the contrary,
we use a simpler form of velocity-tracking reward to reduce
human efforts in waypoint selection:

zy Yy

Ttracking = exp((min(vw7 pomd 0.1) — vcmd)2/0), 9

where the clipping operation encourages the robot to follow
the command most of the time, but it can also reach higher

speeds when necessary, e.g., jumping over gaps. We add
additional penalties to avoid getting stuck or turning around
the obstacles. Besides, we employ an AMP (Adversarial
Motion Priors) [46] style reward to make the robot converge
to a more natural behavior [8]:

Tstyle(s, 8') = max[0, 1 — 0.25(Dy (s, ') — 1)?],  (10)

where Dy, is the discriminator trained to distinguish whether
a state transition is from a reference dataset D,¢¢ or produced
by the agent:
argmin E(s o) p,., [(Dw(s, s') — 1)2]
P
+E(575’)N‘n’9(8,a) [(Dd)(sa S/) + 1)2]
weP

+ 5 Ee ) [V Dy (5 8)]1°]

(1)

V. EXPERIMENTAL RESULTS

Our experiments aim to answer the following questions:
+ How does WMP perform compared with previous state-
of-the-art methods in vision-based locomotion?
e Could a world model trained in a simulator predict real-
world trajectory well?
o Could the achievement of WMP in simulation be well
transferred to real robots?
To ensure a fair comparison, all the methods are trained
using the same environment and reward functions described
in Section IV-C.

A. Simulation Comparison

To answer these questions, we first evaluate our method
and baselines in terms of RL return and velocity tracking
error over different terrains in simulation, where the velocity
tracking error is defined as the mean square error between
v;gld and vgy. The baselines we compare to include:

o Teacher. The teacher policy is trained with access
to privileged information like scandots, serving as an
oracle baseline.

o Student. We reproduce the student policy according to
Cheng et al. [11], which utilizes a ConvNet-RNN to
mimic the teacher’s policy using depth images.

« Blind. We ablate the depth image in the world model,
resulting in a blind policy that gives actions purely
based on proprioception.
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Fig. 3: T-SNE result of recurrent state h;

over six different terrains. training data (Right).

¢« WMP w/o Prop. Similar to Blind, we remove the

proprioception in the world model.

The comparison results are shown in Table I. Note that the
Teacher and Student baselines do not apply to Tilt and Crawl
due to the limitation of scandots, as discussed in Section I.
From the result, our method WMP achieves higher return
and smaller velocity tracking error than baselines in most
tasks. The performance gap between WMP and Teacher is
much smaller than between Teacher and Student, revealing
the superiority of WMP by leveraging the world model to
extract proper information from past perceptions. Moreover,
removing the depth image in the world model causes a
severe performance dropping except for Slope, underscoring
the importance of visual information for locomotion over
challenging terrains [10], [12]. Besides, ablating the propri-
oception also decreases the performance slightly, which we
attribute to the fact that predicting the proprioception can
help capture the physical properties of the environment.

B. Empirical Study

This section provides empirical studies to understand the
benefits of our method from the world model.

Recurrent State Visualization. We first collect the recurrent
state h; over six terrains and visualize them in Figure 3
to investigate whether h; contains enough information for
versatile locomotion. As the t-SNE figure shows, the h; of
different terrains holds clear boundaries, with only a slight
overlap between Slope and Climb, since these two terrains
have similar depth images and Climb can be considered as
a 90° Slope. From the visualization result, h; represents the
terrains well and can help the policy take action according
to the specific task.

Model Interval. The model interval parameter k affects
both world model training and real-world deployment. To
investigate its influence, we vary k from 2 to 30. The results
are shown in Figure 4. In general, a world model with a
smaller interval obtains higher rewards in simulation because
it enables the robot to respond to changes in its surroundings
more quickly. However, unlike the ideal situation in the simu-
lator, real-world applications have non-negligible latency for
depth image acquiring and world model computing, taking
around 40ms in total on A1 hardware. Therefore, we choose
k = 5, i.e., world model intervals of 0.1s, a trade-off between
ideal performance and computational cost.

15 20
model interval

Fig. 4: Average return over different world model interval k£ (Left) and different lengths of

246810116 3:2 64 128
training length (x0.1s)

25 30

t=4k t=>5k t=10k t= 15k t= 20k

[ ::.
Real

[2]

L

°
Model

Real

[=}

g

T
Model

Real

Model

Real

Model

Fig. 5: Real-world depth images and long-term predictions of depth
images using the world model.

Training Length. During world model training, we ran-
domly sample trajectory segments with fixed length L and
train the model to predict current perception based on
previous ones in the segment. The length of the training
data determines how long the historical information model
can remember. In Figure 4, we conduct experiments with
different training lengths. According to the result, training
world models with 1-second segments is sufficient to achieve
acceptable performance. This is consistent with our intuition:
what the robot saw one second before is roughly under its
feet. Further extending the horizon can help perceive the
environment dynamics, but a segment that is too long may
make it inefficient to back-propagate the gradient through
RSSM. For this reason, we set the training length to 6.4
seconds in other experiments throughout the paper.

Real World Prediction. While the world model performs
well in simulation, whether the excellent performance can
transfer to the real world remains to be justified. To verify
this, we collect trajectories in the real world and use the
model to predict the future, given the initial observation and
action sequence without access to intermediate depth images.
Results are shown in Figure 5. From the result, a world model
trained purely in the simulator can give accurate predictions
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Fig. 6: Real-world evaluation over multiple terrains with different difficulties. Success rates are calculated over ten trials.

for real-world trajectories, especially in the critical place it
will pass. For example, in the Crawl task, the shape of the
obstacle in the predicted depth image is different from the
real ones since robots have never seen this shape of obstacles
in the simulator. Nevertheless, the position and angle of the
narrow crevice it can traverse are highly consistent in real and
model images, highlighting the strength and generalization of
latent space world modeling. This finding may help explain
why our method exhibits smooth sim-to-real transfer.

C. Real-world Evaluation

Subsequently, we apply WMP and other baselines to a
real-world Al robot. All methods are directly run on the
onboard Jetson NX hardware without external computing
devices. Depth images are read from the front Intel D435i
camera at 60 Hz with a resolution of 424 x 240. We pre-
process the noisy depth images with spatial and temporal
filters to narrow the visual sim-to-real gap [12]. The pro-
cessed images are then cropped and down-sampled to 64 x 64
and sent to the world model with 100ms latency. We set
K, = 40, K; = 1.0 to make it consistent with the simulation
setting. We select five terrains with different difficulties for
a comprehensive evaluation, including Stair, Gap, Climb,
Tilt, and Crawl, but exclude Slope, which is too easy to
distinguish between methods.

The success rates are listed in Figure 6. From the compar-
ison, the Student policy can traverse through the first three
terrains with low difficulty but fails in more difficult cases,
reflecting the performance gap between the Student policy
and the optimal Teacher policy. In contrast, our method
exhibits a more stable control behavior and successfully
traverses more challenging terrains, including Tilt and Crawl,
which the Student policy cannot tackle. To name a few, WMP
can traverse Gap of 85cm (about 2.1x robot length), Climb
of 55cm (about 2.2x robot height), and Crawl of 22cm (about
0.8x robot height), close to the hardest level in the simulator.
This means that our method achieves smaller sim-to-real gaps
through world modeling. Besides, ablating proprioception
or images in the world model degrades performance to
different degrees, demonstrating the advantage of physical
and visual world modeling for locomotion. Please refer to
the supplemental video for detailed comparisons.

Fig. 7: Snapshots of outdoor experiments.

We also deploy our policy to outdoor environments in a
park. Some snapshots are shown in Figure 7. Our policy
shows consistent behavior in outdoor and indoor environ-
ments and successfully goes up and down stairs, climbs
platforms up to 45cm, and traverses grass and gravel, which
further validates the generalization of our method.

VI. CONCLUSION

In this paper, we present World Model-based Perception
(WMP), a simple yet effective framework that combines
MBRL with vision-based legged locomotion, drawing inspi-
ration from the role of the mental model in animal cognition
and decision-making. By leveraging the advanced world
model, WMP outperforms previous state-of-the-art baselines
in both simulation and real-world evaluation, achieving the
best traversal performance on Unitree Al robots. Further
empirical analyses reveal that the main superiority of WMP
lies in utilizing the world model to extract useful information
from historical high-dimensional perceptions. We hope our
method could provide insight into the emergence of a better
natural learning paradigm for robots. For future work, it is
tempting to train the world model with a mixture of simulated
and real-world data, which holds the promise to construct a
more realistic world model. Besides, it is also appealing to
incorporate other forms of perception, like the sense of touch,
into the world model to expand its applications.
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