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Abstract

We present FlowRL, a novel framework for online reinforcement learning that1

integrates flow-based policy representation with Wasserstein-2-regularized opti-2

mization. We argue that in addition to training signals, enhancing the expressive-3

ness of the policy class is crucial for the performance gains in RL. Flow-based4

generative models offer such potential, excelling at capturing complex, multimodal5

action distributions. However, their direct application in online RL is challenging6

due to a fundamental objective mismatch: standard flow training optimizes for7

static data imitation, while RL requires value-based policy optimization through a8

dynamic buffer, leading to difficult optimization landscapes. FlowRL first models9

policies via a state-dependent velocity field, generating actions through determinis-10

tic ODE integration from noise. We derive a constrained policy search objective11

that jointly maximizes Q through the flow policy while bounding the Wasserstein-212

distance to a behavior-optimal policy implicitly derived from the replay buffer.13

This formulation effectively aligns the flow optimization with the RL objective,14

enabling efficient and value-aware policy learning despite the complexity of the pol-15

icy class. Empirical evaluations on DMControl and Humanoidbench demonstrate16

that FlowRL achieves competitive performance in online reinforcement learning17

benchmarks.18

1 Introduction19

Figure 1: (left) Normalized scores comparing
FlowRL and DM-based RL (QVPO) on 12 chal-
lenging DMC-hard and HumanoidBench tasks,
and 3 DMC-easy & middle tasks. (right) Compu-
tational efficiency on the Dogrun task: 1M-step
training time and single env step inference time.

Recent advances in iterative generative models,20

particularly Diffusion Models (DM) [16, 37] and21

Flow Matching (FM) [22, 23, 40], have demon-22

strated remarkable success in capturing complex23

multimodal distributions. These models excel in24

tasks such as high-resolution image synthesis [7],25

robotic imitation learning [6, 2], and protein struc-26

ture prediction [17, 3], owing to their expressivity27

and ability to model stochasticity. A promising yet28

underexplored application lies in leveraging their29

multimodal generation capabilities to enhance re-30

inforcement learning (RL) policies, particularly31

in environments with highly stochastic or multi-32

modal dynamics.33

Traditional RL frameworks alternate between Q-function estimation and policy updates [38], often34

parameterizing policies as Gaussian [13] or deterministic policies [36, 12] to maximize expected35

returns. However, directly employing diffusion or flow-based models as policies introduces a36

fundamental challenge: the misalignment between RL objectives, which aim to optimize value-aware37

distributions, and generative modeling, which imitates static data distributions. This discrepancy38
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becomes exacerbated in online RL, where nonstationary data distributions and evolving Q-value39

estimates lead to unstable training [12].40

While recent methods have pioneered the use of diffusion model (DM)-based policies in online41

reinforcement learning [44, 8, 42], these approaches still suffer from high computational cost and42

inefficient sample usage (see Section 2). By contrast, flow-based models (FMs), despite their ability43

to represent complex and multimodal policies, have yet to be effectively integrated into online RL44

frameworks.45

Our method distinguishes itself by leveraging carefully selected replay buffer data as a reference46

distribution to align flow-based policies with high-value behaviors while preserving multimodality.47

Inspired by prior works such as SIL [27] and OBAC [25], which utilised behaviour policies to48

guide policy optimization but limit policy expressivity to capture diverse behaviors, we propose a49

unified framework that integrates flow-based action generation with Wasserstein-2-regularized [10]50

distribution matching. Specifically, our policy extraction objective simultaneously maximizes Q-51

values through flow-based actor and minimizes distribution distance from high-reward trajectories52

identified in the replay buffer. By reformulating this dual objective as a guided flow-matching loss, we53

enable the policy to adaptively imitate empirically optimal behaviors while exploring novel actions54

that maximize future returns. Besides, this approach retains the simplicity of standard actor-critic55

architectures, without requiring lengthy iterative sampling steps or auxiliary inference tricks [18,56

8]—yet fully exploits the multimodality of flow models to discover diverse, high-performing policies.57

We evaluate our approach on challenging DMControl [39] and HumanoidBench [35], demonstrating58

competitive performance against state-of-the-art baselines. Notably, our framework achieves one-step59

policy inference, significantly reducing computational overhead and training instability caused by60

backpropagation through time (BPTT) [42, 30]. Experimental results highlight both the empirical61

effectiveness of our method and its practical advantages in scalability and efficiency, establishing a62

robust pathway for integrating expressive generative models into online RL.63

2 Related Work64

In this section, we provide a comprehensive survey of existing policy extraction paradigms based65

on iterative generative models based policy, with a particular focus on recent advances that leverage66

diffusion and flow-based models in offline or online reinforcement learning. We categorize these67

approaches according to their underlying policy optimization objective and highlight their respective68

advantages and limitations.69

Generalized Behavior Cloning Generalized Behavior Cloning, often akin to weighted behavioral70

cloning or weighted regression [32, 31], trains policies by imitating high-reward trajectories from a71

replay buffer, weighted by advantage or value estimates, thereby avoiding BPTT. Previous methods72

like EDP [18], QGPO [24], QVPO [8], and QIPO [45] implemented these paradigms, enhancing73

computational efficiency by bypassing BPTT. However, as demonstrated in prior research, this74

approach has been empirically shown to be inefficient [29, 30], and often leads to suboptimal75

performance.76

Reverse process as policy parametrizations These methods use reparameterized policy gradients,77

computing gradients of the Q-function with respect to policy parameters directly through the genera-78

tive model’s reverse sampling process, similar to the reparameterization trick commonly employed79

in Gaussian-based policies [13]. Previous methods, such as DQL [43], DiffCPS [15], Consistency-80

AC [9], and DACER [42], backpropagate gradients through the reverse diffusion process, which,81

while flexible, incurs significant computational costs due to iterative denoising and backpropagation82

through time (BPTT) [29]. These factors limit the scalability of such algorithms to more complex83

environments. To address this, FQL [30] distills a one-step policy from a flow-matching policy,84

reducing computational cost, but requires careful hyperparameter tuning.85

Other Approaches. Beyond above methods, alternative methods include action gradients [44, 33],86

hybrid Markov Decision Processes (MDPs) [34] , rejection sampling [4] or combinations of above87

strategies [26].88

The distinction between these methods underscores an inherent trade-off between computational89

simplicity and the efficiency of policy extraction. Generalized Behavior Cloning emphasizes ease90
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of implementation, often at the expense of policy extraction efficiency. In contrast, reparameterized91

policy gradients facilitate direct policy updates but incur increased complexity. These observations92

highlight the necessity for further research to achieve a better balance between expressivity and93

scalability when applying iterative generative models to reinforcement learning.94

3 Preliminaries95

3.1 Reinforcement Learning96

Consider the Markov Decision Process (MDPs) [1] defined by a 5-tupleM = ⟨S,A,P, r, γ⟩, where97

S ∈ Rn and A ∈ Rm represent the continuous state and action spaces, P(s′|s, a) : S ×A → ∆(S)98

denotes the dynamics distribution of the MDPs, r(s, a) : S × A → ∆(R) is a reward function,99

γ ∈ [0, 1) gives the discounted factor for future rewards. The goal of RL is to find a policy100

π(a|s) : S → ∆(A) that maximizes the cumulative discounted reward:101

Jπ = Eπ,P

[ ∞∑
t=0

γtr(st, at)

]
. (1)

In this paper, we focus on the online off-policy RL setting, where the agent interacts with the en-102

vironment and collects new data into a replay buffer D ← D ∪ {(s, a, s′, r)}. The replay buffer103

consequently maintains a distribution over trajectories induced by a mixture of historical behav-104

ior policies πβ . At the k-th iteration step, the online learning policy is denoted as πk, with its105

corresponding Q value function defined by:106

Qπk(s, a) = Eπk,P

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
, (2)

and it can be derived by minimizing the TD error [38]:107

argmin
Qπk

E(s,a,r,s′)∼D

[
(Qπk(s, a)− T πkQπk(s, a))2

]
,

where T πkQπk(s, a) = r(s, a) + γ Es′∼P(·|s,a), a′∼πk(·|s′) [Q
πk(s′, a′)] .

(3)

Similarly, we distinguish the following key elements:108

• Optimal policy and Q-function: The optimal policy π∗ maximizes the expected cumulative109

reward, and the associated Q-function Q∗(s, a) characterizes the highest achievable return.110

• Behavior policy and replay buffer: The behavior policy πβ is responsible for generating the data111

stored in the replay buffer [21, 25]. Its Q-function, Qπβ (s, a), reflects the expected return when112

following πβ . Notably, D is closely tied to the distribution of πβ , such that actions sampled from113

D are supported by those sampled from πβ (i.e., a ∈ D ⇒ a ∼ πβ).114

• Behavior-optimal policy: Among all behavior policies present in the buffer, we define πβ∗ as the115

one that achieves the highest expected return, with Q-function Qπβ∗ (s, a).116

These definitions yield the following relationship, which holds for any state-action pair:117

Q∗(s, a) ≥ Qπβ∗ (s, a) ≥ Qπβ (s, a). (4)
This relationship suggests that, although direct access to the optimal policy is typically infeasible, the118

value of the optimal behavior policy constitutes a theoretical lower bound [27] on the performance119

that can be achieved by policies derived from the replay buffer.120

3.2 Flow Models121

Continuous Normalizing Flows (CNF) [5] model the time-varying probability paths by defining122

a transformation between an initial distribution p0 and a target data distribution p1 [22, 23]. This123

transformation is parameterized by a flow ψt(x) governed by a learned time-dependent vector field124

vt(x) [5], following the ordinary differential equation (ODE):125

d

dt
ψt(x) = vt(ψt(x)), (5)

and the continuity equation [41]:126

d

dt
pt(x) +∇ · [pt(x)vt(x)] = 0, ∀x ∈ Rd. (6)
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Flow Matching. Flow matching provides a theoretically grounded framework for training127

continuous-time generative models through deterministic ordinary differential equations (ODEs).128

Unlike diffusion models that rely on stochastic dynamics governed by stochastic differential equa-129

tions (SDEs) [37], flow matching operates via a deterministic vector field, enabling simpler training130

objectives and more efficient sampling trajectories. The core objective is to learn a neural velocity131

field vθ : [0, 1]×Rd → Rd that approximates a predefined conditional target velocity field u(t, x|x1).132

Given a source distribution q(x0) and target distribution p(x1), the training process involves mini-133

mizing the conditional flow matching objective [22]:134

LCFM(θ) = E t∼U([0,1])

x1∼p, x0∼q

∥∥vθ(t, xt)− u(t, xt|x1)∥∥22 , (7)

where the linear interpolation path is defined as xt = tx1 + (1− t)x0 with u(t, xt|x1) = x1 − x0.135

This formulation induces a probability flow governed by the ODE:136

dx

dt
= vθ(t, x), x0 ∼ q, (8)

which transports samples from q to p.137

4 Method138

In this section, we detail the design of our method. We first parameterize the policy as a flow model,139

where actions are generated by integrating a learned velocity field over time. For policy improvement,140

we model policy learning as a constrained policy search that maximizes expected returns while bound-141

ing the distance to an optimal behavior policy. Practically, we circumvent intractable distribution142

matching and optimal behavior policy by aligning velocity fields with elite historical actions through143

regularization and implicit guidance, enabling efficient constraint enforcement.144

4.1 Flow Model based Policy Representation.145

We parameterize πθ with vθ(t, s, at), a state-action-time dependent velocity field, as an actor for146

reinforcement learning. The policy πθ can be derived by solving ODE (8) :147

πθ(s, a
0) = a0 +

∫ 1

0

vθ(t, s, a
t)dt, (9)

where a0 ∼ N (0, I2). The superscript t denotes the continuous time variable in the flow-based ODE148

process to distinguish it from discrete Markovian time steps in reinforcement learning. (For brevity,149

the terminal condition at t = 1 is omitted in the notation.) The Flow Model derives a deterministic150

velocity field vθ from an ordinary differential equation (ODE). However, when a0 is sampled from a151

random distribution, the model effectively functions as a stochastic actor, exhibiting diverse behaviors152

across sampling instances. This diversity in generated trajectories inherently promotes enhanced153

exploration in online reinforcement learning.154

Recall the definition in Section 3.1. Following the notation of πβ and πβ∗ , we can define the155

corresponding velocity fields as follows:156

Let vβ be the velocity field induced by the behavior policy πβ , such that:

vβ(s, a) = a− a0.

where s, a ∼ D, and a0 ∼ N (0, I2).157

Similarly, let vβ∗ denote the velocity field induced by the behavior-optimal policy πβ∗ :

vβ∗(s, a) = a− a0.

where a ∼ πβ∗ , and a0 ∼ N (0, I2).158
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4.2 Optimal-Behavior Constrained Policy Search with Flow Models159

Building on the discussion in Section 3.1, where the optimal behavior policy is established as a lower160

bound for the optimal policy, we proceed to optimize the following objective under a constrained161

policy search setting:162

θ∗ = argmax
θ

Ea∼πθ [Qπθ (s, a)] ,

s.t. D (πθ, πβ∗) ≤ ϵ.
(10)

Here, D(πθ, πβ∗) denotes a distance metric between the current policy and the optimal behavior163

policy distributions.164

The objective is to maximize the expected reward Ea∼πθ [Qπ(s, a)] while constraining the learned165

policy πθ to remain within an ϵ-neighborhood of the optimal behavior policy πβ∗ , i.e.,D(πθ, πβ∗) ≤ ϵ.166

This formulation utilizes the Q-function, a widely used and effective approach for policy extraction,167

while ensuring fidelity to the optimal behavior policy. Despite its theoretical appeal, this optimization168

paradigm exhibits two inherent limitations:169

• Challenges in computing distributional distances: For flow-based models, computing policy170

densities at arbitrary samples is computationally expensive, which limits the practicality of distance171

metrics such as the KL divergence for sample-based estimation and policy regularization.172

• Inaccessibility of the optimal behavior policy πβ∗ : The replay buffer contains trajectories from173

a mixture of policies, making it difficult to directly sample from πβ∗ or to reliably estimate its174

associated velocity field, thereby complicating the computation of related quantities in practice.175

4.3 A Tractable Surrogate Objective176

To overcome the aforementioned challenges, we propose the following solutions:177

• Wasserstein Distance as Policy Constraints: We introduce a policy regularization method based178

on the alignment of velocity fields. This approach bounds the Wasserstein distance between policies179

by characterizing their induced dynamic transport processes, thereby imposing direct empirical180

constraints on the evolution of policies without requiring density estimation.181

• Implicit Guidance for Optimal Behaviors: Instead of explicitly constraining the policy to match182

the inaccessible πβ∗ , we leverage implicit guidance from past best-performing behaviors in the183

buffer, enabling efficient revisiting of arbitrary samples and encouraging the policy to remain within184

a high-quality region of the action space.185

In particular, we adopt the squared Wasserstein-2 distance for its convexity with respect to the186

policy distribution and ease of implementation. This metric is also well-suited for measuring the187

velocity field between policies and enables efficient sample-based regularization within the flow-based188

modeling framework. In general, we can define the Wasserstein-2 Distance [41] as follows :189

Definition 4.1 (Wasserstein-2 Distance) Given two probability measures p and q on Rn, the190

squared Wasserstein-2 distance between p and q is defined as:191

W 2
2 (p, q) = inf

γ∈Π(p,q)

∫
Rn×Rn

γ(x, y)∥x− y∥2dxdy, (11)

where Π(p, q) denotes the joint distributions of p and q, γ on Rn × Rn with marginals p and q.192

Specifically, we derive a tractable upper bound for the Wasserstein-2 distance (proof in A.1):193

Theorem 4.1 (W-2 Bound for Flow Matching) Let vθ and vβ∗ be two velocity fields inducing194

time-evolving distributions πtθ(a|s) and πtβ∗(a|s), respectively. Assume vβ is Lipschitz continuous195

in a with constant L. at = ta+ (1− t)a0. Then, the squared Wasserstein-2 distance between πθ and196

πβ∗ at t = 1 satisfies:197

W 2
2 (πθ, πβ∗) ≤ e2L

∫ 1

0

Ea∼πβ∗
[∥∥vθ(s, at, t)− vβ∗

∥∥2] dt. (12)

By explicitly constraining the Wasserstein-2 distance, the model enforces proximity between the198

current policy and the optimal policy stored in the buffer. This objective is inherently consistent199
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with the generative modeling goal of minimizing distributional divergence. The regularization200

mechanism benefits from the representational expressiveness of flow-based models in capturing201

diverse, high-performing action distributions while systematically restricting policy updates.202

However, while the upper bound of Wasserstein-2 distance above is theoretically tractable, sampling203

directly from πβ∗ or evaluating its velocity field remains a computational barrier in practice. To204

circumvent this limitation, we introduce an implicit guidance (13) mechanism through the Qπβ∗ ,205

which is more readily estimable:206

Ea′∼πθ,t ∼U(0,1)
s,a∼D

[
f (Qπβ∗ (s, a)−Qπθ (s, a′))

∥∥vθ(s, at, t)− (a− a0)
∥∥2] , (13)

207

f ∝ max (Qπβ∗ −Qπθ , 0) . (14)

The constraint incorporates a non-negative weighting function, as defined in Eq. (14), thereby208

establishing an adaptive regularization mechanism. A positive value of f signifies that the behavioral209

policy achieves superior performance relative to the current policy; under these circumstances, the210

constraint adaptively regularizes the current policy towards the optimal behavioral policy.211

The implicit form of the constraints in Eq. (12) enables efficient utilization of arbitrary samples from212

the replay buffer, thus improving sample efficiency. Moreover, by relaxing the strict constraint on the213

Wasserstein-2 distance, the modified objective enhances computational efficiency. Notwithstanding214

this relaxation, policy improvement guarantees remain valid, as demonstrated in the following215

theorem (proof in Appendix A.2):

Figure 2: Illustration of Theorem 4.2 on a bandit toy example: (left) behavior data in the replay buffer;
(middle) implicit value-guided flow matching steers the policy toward the high-performance behavior
policy(πβ∗ ), heatmap shows Qπk −Qπβ∗ , white lines indicate transport paths; (right) standard flow
matching leads to dispersed sampling with high variance under limited flow steps.

216

Theorem 4.2 (Weighted CFM) Let πk(a|s) be the current policy induced by velocity field vθk ,217

and f , a non-negative weighting function with f ∝ Qπβ∗ − Qπk . Minimizing the objective (13)218

yields an improved policy distribution:219

πk+1(a|s) =
f(s, a)πβ∗(a|s)

Z(s)
, (15)

where Z(s) =
∫
A f · πk(a|s) da is the normalization factor.220

Figure 2 shows that, as guaranteed by Theorem 4.2, flow matching with guidance can steer the policy221

toward the πβ∗ , even without direct sampling from it. For details of the toy example settings, see222

Appendix B.4.223

4.4 A Practical Implementation224

Building on the theoretical developments above, we now present a practical implementation of225

FlowRL, as detailed in Algorithm 1.226
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Policy Evaluation Recall the constraint in Eq. (13), which necessitates the evaluation of both the227

current policy value function Qπθ and the optimal behavioral policy value function Qπβ∗ . The value228

function Qπθ is estimated using standard Bellman residual minimization, as described in Eq. (3). For229

Qπβ∗ , leveraging the definition of πβ∗ , we similarly adopt the following objective:230

arg min
Q
πβ∗

E(s,a,r,s′)∼D

[
(Qπβ∗ (s, a)− T πβ∗Qπβ∗ (s, a))2

]
, (16)

T πβ∗Qπβ∗ (s, a) = r(s, a) + γ Es′∼D

[
max
a′∼D

Qπβ∗ (s′, a′)
]
. (17)

To circumvent the difficulties of directly evaluating the max operator, we leverage techniques from231

offline reinforcement learning to estimate Qπβ∗ . Among these approaches, we adopt expectile232

regression [19] due to its simplicity and compatibility with unmodified data pipelines. Specifically,233

the value function V πβ∗ and the action-value function Qπβ∗ are estimated by solving the following234

optimization problems:235

arg min
V
πβ∗

E(s,a)∼D [Lτ2 (Q
πβ∗ (s, a)− V πβ∗ (s))] , (18)

236

arg min
Q
πβ∗

E(s,a,s′,r)∼D

[
(r + γV πβ∗ (s′)−Qπβ∗ (s, a))2

]
, (19)

where Lτ2(x) = |τ − 1(x < 0)|x2 denotes the expectile regression loss and τ is the expectile factor.237

Policy Extraction Accordingly, the policy extraction problem for flow-based models can be238

formulated as the following constrained optimization:239

θ∗ = argmax
θ

Es∼D, a∼πθ [Q
πθ (s, a)] , (20)

240

s.t. Es,a∼D,a′∼πθ

[
f (Qπβ∗ −Qπθ )

∥∥vθ(s, at, t)− (a− a0)
∥∥2] ≤ ϵ. (21)

Although a closed-form solution can be derived using the Lagrangian multiplier and KKT conditions,241

it is generally intractable to apply in practice due to the unknown partition function [31, 32, 25].242

Therefore, we adopt a Lagrangian form, leading to the following objective:243

L(θ) = Es,a∼D,a′∼πθ [Q
πθ (s, a′)︸ ︷︷ ︸

exploration

−λ

f(Qπβ∗ −Qπθ )∥vθ − (a− a0)∥2︸ ︷︷ ︸
exploitation

−ϵ

]. (22)

Where λ is the Lagrangian multiplier, which is often set as a constant in practice [11, 20].244

Objective (22) can be interpreted as comprising two key components: (1) maximization of the245

learned Q-function, which encourages the agent to explore unknown regions and facilitates policy246

improvement; and (2) a policy distribution regularization term, which enforces alignment with optimal247

behavior policies and thereby promotes the exploitation of high-quality actions.248

Conceptual similarities exist between our method and both self-imitation learning [27] and tandem249

learning [28]. Self-imitation learning focuses on exploiting high-reward behaviors by encouraging250

the policy to revisit successful past experiences, typically requiring complete trajectories and modifi-251

cations to the data pipeline. In contrast, our method operates directly on individual samples from252

the buffer, enabling more flexible and efficient sample utilization. Tandem learning, by comparison,253

decomposes the learning process into active and passive agents to facilitate knowledge transfer, with254

a primary emphasis on value learning, whereas our approach is centered on policy extraction.255

5 Experiments256

To comprehensively evaluate the effectiveness and generality of FlowRL, we conduct experiments257

on a diverse set of challenging tasks from DMControl [39] and HumanoidBench [35]. These258

benchmarks encompass high-dimensional locomotion and human-like robot (Unitree H1) control259

tasks. Our evaluation aims to answer the following key questions:260
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Algorithm 1 Flow RL

Require: CriticQπθ , criticQπ
∗
β , value V π

∗
β , flow model vθ, replay bufferD = ∅, weighting function

f
1: repeat
2: for each environment step do
3: a ∼ πθ(a|s), r, s′ ∼ P (s′|s, a)
4: D ← D ∪ {(s, a, s′, r)}
5: end for
6: for each gradient step do
7: Estimate value for πθ : Update Qπθ by (3),
8: Estimate value for πβ∗ : Update Qπβ∗ by (19), update V πβ∗ by (18)
9: Update vθ by (22)

10: end for
11: until reach the max environment steps

1. How does FlowRL compare to previous online RL algorithms and existing diffusion-based online261

algorithms?262

2. Can the algorithm still demonstrate strong performance in the absence of any explicit exploration263

mechanism?264

3. How does the constraint affect the performance?265

We compare FlowRL against two categories of baselines to ensure comprehensive evaluation: (1)266

Model-free RL: We consider three representative policy parameterizations: deterministic policies267

(TD3 [12]), Gaussian policies (SAC [13]), and diffusion-based policies (QVPO [8], the previous268

state-of-the-art for diffusion-based online RL). (2) Model-based RL: TD-MPC2 [14], a strong model-269

based method on these benchmarks, is included for reference only, as it is not directly comparable to270

model-free methods.271

5.1 Results and Analysis272

Figure 3: Main results. We provide performance comparisons for tasks (first column: DMC-
easy/middle; second and third columns: DMC-hard; fourth and fifth columns: HumanoidBench).
For comprehensive results, please refer to Appendix D. All model-free algorithms (FlowRL, SAC,
QVPO, TD3) are evaluated with 5 random seeds, while the model-based algorithm (TD-MPC2) uses
3 seeds. Note that direct comparison between model-free methods and the model-based TD-MPC2 is
not strictly fair; TD-MPC2 is included just as a reference.

The main results are summarized in Figure 3, which shows the learning curves across tasks. FlowRL273

consistently outperforms or matches the model-free baselines on the majority of tasks, demonstrating274

strong generalization and robustness, especially in challenging high-dimensional (e.g., the DMC dog275

domain, where s ∈ R223 and a ∈ R38) and complex control settings (e.g., Unitree H1). Compared276
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(a) Effect of the constraint: FlowRL with theconstraint achieves higher
returns compared to the variant without the constraint.

(b) Sensitivity to flow steps: The
number of flow steps has a limited
effect on FlowRL performance.

Figure 4: Ablation studies

to strong model-based baselines, FlowRL achieves comparable results but is much more efficient277

in terms of wall-clock time. Notably, both during the training and evaluation stage, we use flow278

steps N = 1, and do not employ any sampling-based action selection used in [8, 18]. Despite the279

absence of any explicit exploration mechanism, FlowRL demonstrates strong results, which can be280

attributed to both the inherent stochasticity and exploratory capacity of the flow-based actor and the281

effective exploitation of advantageous actions identified by the policy constraint. These findings282

indicate that, while exploration facilitates the discovery of high-reward actions, the exploitation of283

previously identified advantageous behaviors is equally essential.284

5.2 Ablation Studies285

One of the central designs in FlowRL is the introduction of a policy constraint mechanism. This286

design aims to guide the policy towards optimal behavior by adaptively weighting the constraint based287

on the relative advantage of the optimal behavioral policy over the current policy. To rigorously assess288

the necessity and effectiveness of this component, we address Q3 by conducting ablation studies289

in which the policy constraint is omitted from FlowRL. Experimental results in Figure 4a indicate290

that the presence of the policy constraint leads to improvements in performance and, by constraining291

the current policy towards the optimal behavioral policy, enhances sample efficiency. These benefits292

are especially pronounced in environments with complex dynamics (e.g., H1 control tasks from293

HumanoidBench), highlighting the importance of adaptive policy regularization in challenging task294

settings.295

We also investigate the sensitivity of the algorithm to different choices of the number of flow steps296

(N=1,5,10). Experimental results in Figure 4b demonstrate that varying the number of flow steps has297

only a limited impact on the overall performance. Specifically, using a smaller number of flow steps298

does not substantially affect the final policy performance. On the other hand, increasing the number299

of flow steps results in longer backpropagation through time (BPTT) chains, which significantly300

increases computational complexity and training time. These findings suggest that FlowRL is robust301

to the choice of flow step and that single-step inference is generally sufficient for achieving stable302

and efficient learning in practice.303

6 Conclusion304

We introduces FlowRL, a practical framework that integrates flow-based generative models into online305

reinforcement learning through Wasserstein-2 distance constrained policy search. By parameterizing306

policies as state-dependent velocity fields, FlowRL leverages the expressivity of flow models to307

model action distributions. To align policy updates with value maximization, we propose an implicit308

guidance mechanism that regularizes the learned policy using high-performing actions from the309

replay buffer. This approach avoids explicit density estimation and reduces iterative sampling steps,310

achieving stable training and improved sample efficiency. Empirical results demonstrate that FlowRL311

achieves competitive performance.312
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A Proofs in the Main Text428

Here, we present a sketch of theoretical analyses in Figure 5. We model the policy learning as a429

constrained policy search that maximizes expected returns while bounding the distance to an optimal430

behavior policy. To avoid sampling from π∗
β , we employ guided flow matching, which allows the431

constraint to utilize arbitrary data from the buffer. Finally, we solve the problem using Lagrangian432

relaxation.433

A.1 Proof for Theorem 4.1434

Before the proof, we first introduce the following lemma [10]:435

Lemma 1 :Let ψt1(x0) and ψt2(x0) be the two different flow maps induced by vt1 and vt2 starting436

from x0, and assume vt2 are Lipschitz continuous in x with constant L. Define their difference as437

∆t(x
0) = ψt1(x

0)−ψt2(x1). (For notational consistency, we denote the time variable as a superscript.)438

Then the difference satisfies the following inequality:439

d

dt
∆t(x0) ≤ ||vt1(ψt1(x0))− vt2(ψt1(x0))||+ L||∆t(x0)||

By rewriting equivalently, we have:440

d

dt
∆t(x

0) = vt1(ψ
t
1(x

0))− vt2(ψt1(x0))︸ ︷︷ ︸
δv(t)

+ vt2(ψ
t
1(x

1))− vt2(ψt2(x0))︸ ︷︷ ︸
δψ(t)
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:

RL objective:

 

 

 constraint policy search

Upper bound for W-2 distance

Implicit guide 

Lagrange form

Figure 5: Theoretical sketch of FlowRL

Since vt2 is Lipschitz continuous in x with constant L, we have:441

∥vt2(x)− vt2(y)∥ ≤ L∥x− y∥

By Lipschitz continuity,442

∥δψ(t)∥ ≤ L∥∆t(x
0)∥

Then,443 ∥∥∥∥ ddt∆t(x
0)

∥∥∥∥ ≤ ∥δv(t)∥+ L∥∆t(x
0)∥

This concludes the proof of the inequality satisfied by the difference of the two flow maps.444

Let vθ and vβ∗ be two velocity fields that induce time-evolving distributions πtθ(a|s) and πtβ∗(a|s),445

respectively((we omit the superscript t = 1 for policy distributions, i.e., πθ(a|s) := π1
θ(a|s)).).446

Assume vβ∗ is Lipschitz continuous with constant L. Then, define f(t) = ∥∆t(x0)∥, by Lemma447

1,we have:448

d

dt
f(t) ≤ ∥δv(t)∥+ Lf(t),
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where δv(t) = vθ(t, ψ
θ
t (s, a

0))− vβ∗ . Then, we have,449

d

dt

(
e−Ltf(t)

)
≤ e−Lt∥δv(t)∥.

Then we can get (by simply intergrating from 0 to t both side and multiplying e−Lt):450

e−Ltf(t)− f(0) ≤
∫ t

0

e−Lm∥δv(m)∥dm.

The initial policy distribution a0 ∼ p(a0) is shared between the two velocity fields, so f(0) = 0.451

Therefore,452

f(t) ≤ eLt
∫ t

0

e−Lm∥δv(m)∥dm.

At t = 1,453

f(1) ≤ eL
∫ 1

0

e−Lm∥vθ(s, ψtθ(s, a0),m)− vβ∗∥dm.

By taking the expectation and using Jensen’s inequality:454

Ea0 [f(1)2] ≤ e2L
∫ 1

0

Ea∼πtθ [∥vθ(s, a, t)− vβ∗∥2]dt.

And use the definition of the Wasserstein-2 distance:455

W 2
2 (πθ, πβ∗) = inf

γ∈Π(πθ,πβ∗ )

∫
Rn×Rn

∥x− y∥2dγ(x, y),

where Π(πθ, πβ∗) denotes the set of all couplings between πθ and πβ∗ . Construct the following456

coupling γ and define:457

• a1θ = ψ1
θ(x0),458

• a1β∗ = ψ1
β∗(x0).459

By definition, the coupling γ is defined via the joint distribution of (a ∼ πθ, a ∼ πβ∗) induced by460

a0 ∼ p0. So, for any coupling γ,461

W 2
2 (πθ, πβ∗) ≤

∫
Rn×Rn

∥x− y∥2dγ(x, y).

With the constructed coupling substituted, we have462 ∫
Rn×Rn

∥x− y∥2dγ(x, y) = Ea0
[
∥ψ1

θ(a
0)− ψ1

β∗(a0)∥2
]
= Ea0 [f(1)2].

Recall that the flow-based policy models transport the initial distribution p0(a0) to the final policy463

distributions πθ and πβ∗ at t = 1. The squared Wasserstein-2 distance between πθ and πβ∗ can be464

bounded as465

W 2
2 (πθ, πβ∗) ≤ Ea0 [f(1)2]. (23)

Thus,466

W 2
2 (πθ, πβ∗) ≤ e2L

∫ 1

0

Ea∼πtθ [∥vθ(s, a
t)− vβ∗(s, a)∥2]ds. (24)

A.2 Proof for Theorem 4.2467

The weighted loss can be written as:468

LW(θ) =

∫
s∼D

ρ(s)

∫
s,a∼D

f(s, a)πk(a|s) ∥vθ(s, at, t)− (a− a0))∥da ds

where ρ(s) is the state distribution in replay buffer, a0 ∼ N (0, I2) , t ∼ U(0, 1), at = ta+(1− t)a0.469
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Assuming the weighted policy distribution is:470

πk+1(a
′|s) = f(s, a)πk(a|s)

Z(s)
, where Z(s) =

∫
s,a∼D

f(s, a)πk(a|s) da.

Substituting above πk+1(a
′|s) into the loss function, we have:471

LW(θ) =

∫
s∼D

ρ(s)Z(s)
∫
s,a∼D

πk+1(a
′|s) ∥vθ(s, at, t)− (a− a0))∥da ds.

The expectation form:472

LW(θ) = Es∼D, a∼πk+1(a|s)
[
Z(s) ∥vθ(s, at, t)− (a− a0))∥

]
.

The gradient of LW(θ) is:473

∇θLW(θ) = Es∼D, a∼πk+1(a|s)
[
Z(s)∇θ∥vθ(s, a, t)− (a− a0))∥

]
.

Z(s) does not depend on θ, that means, minimizing LW(θ) is equivalent to minimizing the expected474

loss under the new distribution πk+1(a|s), provided that our assumption holds.475

B Hyperparameters and Experiment Settings476

In this section, we provide comprehensive details regarding the implementation of FlowRL, the477

baseline algorithms, and the experimental environments. All experiments are conducted on a single478

NVIDIA H100 GPU and an Intel(R) Platinum 8480C CPU, with two tasks running in parallel on the479

GPU.480

B.1 Hyperparameters481

The hyperparameters used in our experiments are summarized in Table 1. For the choice of the482

weighting function, we use f(x) = I(x) · exp(x), where I(x) is the indicator function, i.e.,483

I(x) =
{
1, if x > 0

0, otherwise

For numerical stability, the Q function is normalized by subtracting its mean exclusively during the484

computation of the weighting function.485

B.2 Baselines486

In our experiments, we have implemented SAC, TD3, QVPO and TD-MPC2 using their original487

code bases and slightly tuned them to match our evaluation protocol to ensure a fair and consistent488

comparison.489

• For SAC [13], we utilized the open-source PyTorch implementation, available at https://github.490

com/pranz24/pytorch-soft-actor-critic.491

• TD3 [12] was integrated into our experiments through its official codebase, accessible at https:492

//github.com/sfujim/TD3.493

• QVPO [8] was integrated into our experiments through its official codebase, accessible at https:494

//https://github.com/wadx2019/qvpo.495

• TD-MPC2 [14] was employed with its official implementation from https://github.com/496

nicklashansen/tdmpc2 and used their official results.497

B.3 Environment Details498

We validate our algorithm on the DMControl [39] and HumanoidBench [35], including the most499

challenging high-dimensional and Unitree H1 humanoid robot control tasks. On DMControl, tasks500

are categorized into DMC easy & middle (walker and quadruped domains), and DMC hard (dog and501

humanoid domains). On HumanoidBench, we focus on tasks that do not require dexterous hands.502
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Table 1: Hyperparameters
Hyperparameter Value

Hyperparameters

Optimizer Adam
Critic learning rate 3× 10−4

Actor learning rate 3× 10−4

Discount factor 0.99
Batchsize 256
Replay buffer size 1× 106

Expectile factor τ 0.9
Lagrangian multiplier λ 0.1
Flow steps N 1
ODE Slover Midpoint Euler

Value network
Network hidden dim 512
Network hidden layers 3
Network activation function mish

Policy network
Network hidden dim 512
Network hidden layers 2
Network activation function elu

Figure 6: Task domain visualizations

B.4 Toy Example Setup503

We consider a 2D toy example as follows. The behavior policy is a Gaussian mixture model with 10504

components, each with mean505

µk = (10 cos(2πk/10), 10 sin(2πk/10)), k = 0, 1, . . . , 9,

and covariance I . The initial distribution is a Gaussian N ((0, 0), I). Qπβ∗ −Qπθ is defined as506

1

600
∥x− (0, 8.66)∥2 − 3,

and f(x) = I(x) · x. Flow steps N = 5.507

C Limitation and Future Work508

In this work, we propose a flow-based reinforcement learning framework that leverages the behavior-509

optimal policy as a constraint. Although competitive performance is achieved even without explicit510

exploration, investigating efficient adaptive exploration mechanisms remains a promising direction511

for future research.512
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Task State dim Action dim
Walker Run 24 6
Walker Stand 24 6
Quadruped Walk 78 12
Humanoid Run 67 24
Humanoid Walk 67 24
Dog Run 223 38
Dog Trot 223 38
Dog Stand 223 38
Dog Walk 223 38

Table 2: Task dimensions for DMControl.

Task Observation dim Action dim
H1 Balance Hard 77 19
H1 Balance Simple 64 19
H1 Crawl 51 19
H1 Maze 51 19
H1 Reach 57 19
H1 Sit Hard 64 19

Table 3: Task dimensions for HumanoidBench.

D More Experimental Results513

Figure 7: Experimental results are reported on 12 tasks drawn from HumanoidBench and DMC-hard,
3 tasks from DMC-easy & middle.
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NeurIPS Paper Checklist514

1. Claims515

Question: Do the main claims made in the abstract and introduction accurately reflect the516

paper’s contributions and scope?517

Answer: [Yes]518

Justification: Yes, the main claims made in the abstract and introduction accurately reflect519

the paper’s contributions and scope.520

Guidelines:521

• The answer NA means that the abstract and introduction do not include the claims522

made in the paper.523

• The abstract and/or introduction should clearly state the claims made, including the524

contributions made in the paper and important assumptions and limitations. A No or525

NA answer to this question will not be perceived well by the reviewers.526

• The claims made should match theoretical and experimental results, and reflect how527

much the results can be expected to generalize to other settings.528

• It is fine to include aspirational goals as motivation as long as it is clear that these goals529

are not attained by the paper.530

2. Limitations531

Question: Does the paper discuss the limitations of the work performed by the authors?532

Answer: [Yes]533

Justification: Yes, the paper discusses its limitations in the appendix. Although compet-534

itive performance is achieved without explicit exploration mechanisms, the exploration535

regularization mechanism remains an important direction for future work.536

Guidelines:537

• The answer NA means that the paper has no limitation while the answer No means that538

the paper has limitations, but those are not discussed in the paper.539

• The authors are encouraged to create a separate "Limitations" section in their paper.540

• The paper should point out any strong assumptions and how robust the results are to541

violations of these assumptions (e.g., independence assumptions, noiseless settings,542

model well-specification, asymptotic approximations only holding locally). The authors543

should reflect on how these assumptions might be violated in practice and what the544

implications would be.545

• The authors should reflect on the scope of the claims made, e.g., if the approach was546

only tested on a few datasets or with a few runs. In general, empirical results often547

depend on implicit assumptions, which should be articulated.548

• The authors should reflect on the factors that influence the performance of the approach.549

For example, a facial recognition algorithm may perform poorly when image resolution550

is low or images are taken in low lighting. Or a speech-to-text system might not be551

used reliably to provide closed captions for online lectures because it fails to handle552

technical jargon.553

• The authors should discuss the computational efficiency of the proposed algorithms554

and how they scale with dataset size.555

• If applicable, the authors should discuss possible limitations of their approach to556

address problems of privacy and fairness.557

• While the authors might fear that complete honesty about limitations might be used by558

reviewers as grounds for rejection, a worse outcome might be that reviewers discover559

limitations that aren’t acknowledged in the paper. The authors should use their best560

judgment and recognize that individual actions in favor of transparency play an impor-561

tant role in developing norms that preserve the integrity of the community. Reviewers562

will be specifically instructed to not penalize honesty concerning limitations.563

3. Theory Assumptions and Proofs564

Question: For each theoretical result, does the paper provide the full set of assumptions and565

a complete (and correct) proof?566
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Answer: [Yes]567

Justification: Yes, the paper provides the full set of assumptions and complete proofs for all568

theorems in the appendix.569

Guidelines:570

• The answer NA means that the paper does not include theoretical results.571

• All the theorems, formulas, and proofs in the paper should be numbered and cross-572

referenced.573

• All assumptions should be clearly stated or referenced in the statement of any theorems.574

• The proofs can either appear in the main paper or the supplemental material, but if575

they appear in the supplemental material, the authors are encouraged to provide a short576

proof sketch to provide intuition.577

• Inversely, any informal proof provided in the core of the paper should be complemented578

by formal proofs provided in appendix or supplemental material.579

• Theorems and Lemmas that the proof relies upon should be properly referenced.580

4. Experimental Result Reproducibility581

Question: Does the paper fully disclose all the information needed to reproduce the main ex-582

perimental results of the paper to the extent that it affects the main claims and/or conclusions583

of the paper (regardless of whether the code and data are provided or not)?584

Answer: [Yes]585

Justification: Yes, the paper fully discloses all information needed to reproduce the main586

experimental results. Pseudocode is provided in the main text, and all experimental settings,587

hyperparameters, and baseline details are included in the appendix.588

Guidelines:589

• The answer NA means that the paper does not include experiments.590

• If the paper includes experiments, a No answer to this question will not be perceived591

well by the reviewers: Making the paper reproducible is important, regardless of592

whether the code and data are provided or not.593

• If the contribution is a dataset and/or model, the authors should describe the steps taken594

to make their results reproducible or verifiable.595

• Depending on the contribution, reproducibility can be accomplished in various ways.596

For example, if the contribution is a novel architecture, describing the architecture fully597

might suffice, or if the contribution is a specific model and empirical evaluation, it may598

be necessary to either make it possible for others to replicate the model with the same599

dataset, or provide access to the model. In general. releasing code and data is often600

one good way to accomplish this, but reproducibility can also be provided via detailed601

instructions for how to replicate the results, access to a hosted model (e.g., in the case602

of a large language model), releasing of a model checkpoint, or other means that are603

appropriate to the research performed.604

• While NeurIPS does not require releasing code, the conference does require all submis-605

sions to provide some reasonable avenue for reproducibility, which may depend on the606

nature of the contribution. For example607

(a) If the contribution is primarily a new algorithm, the paper should make it clear how608

to reproduce that algorithm.609

(b) If the contribution is primarily a new model architecture, the paper should describe610

the architecture clearly and fully.611

(c) If the contribution is a new model (e.g., a large language model), then there should612

either be a way to access this model for reproducing the results or a way to reproduce613

the model (e.g., with an open-source dataset or instructions for how to construct614

the dataset).615

(d) We recognize that reproducibility may be tricky in some cases, in which case616

authors are welcome to describe the particular way they provide for reproducibility.617

In the case of closed-source models, it may be that access to the model is limited in618

some way (e.g., to registered users), but it should be possible for other researchers619

to have some path to reproducing or verifying the results.620
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5. Open access to data and code621

Question: Does the paper provide open access to the data and code, with sufficient instruc-622

tions to faithfully reproduce the main experimental results, as described in supplemental623

material?624

Answer: [Yes]625

Justification: Yes, the code will be made available after the open-source approval process is626

completed.627

Guidelines:628

• The answer NA means that paper does not include experiments requiring code.629

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/630

public/guides/CodeSubmissionPolicy) for more details.631

• While we encourage the release of code and data, we understand that this might not be632

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not633

including code, unless this is central to the contribution (e.g., for a new open-source634

benchmark).635

• The instructions should contain the exact command and environment needed to run to636

reproduce the results. See the NeurIPS code and data submission guidelines (https:637

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.638

• The authors should provide instructions on data access and preparation, including how639

to access the raw data, preprocessed data, intermediate data, and generated data, etc.640

• The authors should provide scripts to reproduce all experimental results for the new641

proposed method and baselines. If only a subset of experiments are reproducible, they642

should state which ones are omitted from the script and why.643

• At submission time, to preserve anonymity, the authors should release anonymized644

versions (if applicable).645

• Providing as much information as possible in supplemental material (appended to the646

paper) is recommended, but including URLs to data and code is permitted.647

6. Experimental Setting/Details648

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-649

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the650

results?651

Answer: [Yes]652

Justification: Yes, all hyperparameters and experimental setup details necessary to under-653

stand the results are provided in the appendix.654

Guidelines:655

• The answer NA means that the paper does not include experiments.656

• The experimental setting should be presented in the core of the paper to a level of detail657

that is necessary to appreciate the results and make sense of them.658

• The full details can be provided either with the code, in appendix, or as supplemental659

material.660

7. Experiment Statistical Significance661

Question: Does the paper report error bars suitably and correctly defined or other appropriate662

information about the statistical significance of the experiments?663

Answer: [Yes]664

Justification: Yes, for all model-free algorithms, five random seeds are used, and for model-665

based algorithm, three random seeds are used. All results are presented as mean ± standard666

deviation.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• The authors should answer "Yes" if the results are accompanied by error bars, confi-670

dence intervals, or statistical significance tests, at least for the experiments that support671

the main claims of the paper.672
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• The factors of variability that the error bars are capturing should be clearly stated (for673

example, train/test split, initialization, random drawing of some parameter, or overall674

run with given experimental conditions).675

• The method for calculating the error bars should be explained (closed form formula,676

call to a library function, bootstrap, etc.)677

• The assumptions made should be given (e.g., Normally distributed errors).678

• It should be clear whether the error bar is the standard deviation or the standard error679

of the mean.680

• It is OK to report 1-sigma error bars, but one should state it. The authors should681

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis682

of Normality of errors is not verified.683

• For asymmetric distributions, the authors should be careful not to show in tables or684

figures symmetric error bars that would yield results that are out of range (e.g. negative685

error rates).686

• If error bars are reported in tables or plots, The authors should explain in the text how687

they were calculated and reference the corresponding figures or tables in the text.688

8. Experiments Compute Resources689

Question: For each experiment, does the paper provide sufficient information on the com-690

puter resources (type of compute workers, memory, time of execution) needed to reproduce691

the experiments?692

Answer: [Yes]693

Justification: Yes, the appendix provides detailed information about the specific computa-694

tional devices used for the experiments.695

Guidelines:696

• The answer NA means that the paper does not include experiments.697

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,698

or cloud provider, including relevant memory and storage.699

• The paper should provide the amount of compute required for each of the individual700

experimental runs as well as estimate the total compute.701

• The paper should disclose whether the full research project required more compute702

than the experiments reported in the paper (e.g., preliminary or failed experiments that703

didn’t make it into the paper).704

9. Code Of Ethics705

Question: Does the research conducted in the paper conform, in every respect, with the706

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?707

Answer: [Yes]708

Justification: We make sure the code was anonymous709

Guidelines:710

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.711

• If the authors answer No, they should explain the special circumstances that require a712

deviation from the Code of Ethics.713

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-714

eration due to laws or regulations in their jurisdiction).715

10. Broader Impacts716

Question: Does the paper discuss both potential positive societal impacts and negative717

societal impacts of the work performed?718

Answer: [Yes]719

Justification: Yes, the appendix discusses both potential positive societal impacts and720

limitations of the work.721

Guidelines:722

• The answer NA means that there is no societal impact of the work performed.723
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• If the authors answer NA or No, they should explain why their work has no societal724

impact or why the paper does not address societal impact.725

• Examples of negative societal impacts include potential malicious or unintended uses726

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations727

(e.g., deployment of technologies that could make decisions that unfairly impact specific728

groups), privacy considerations, and security considerations.729

• The conference expects that many papers will be foundational research and not tied730

to particular applications, let alone deployments. However, if there is a direct path to731

any negative applications, the authors should point it out. For example, it is legitimate732

to point out that an improvement in the quality of generative models could be used to733

generate deepfakes for disinformation. On the other hand, it is not needed to point out734

that a generic algorithm for optimizing neural networks could enable people to train735

models that generate Deepfakes faster.736

• The authors should consider possible harms that could arise when the technology is737

being used as intended and functioning correctly, harms that could arise when the738

technology is being used as intended but gives incorrect results, and harms following739

from (intentional or unintentional) misuse of the technology.740

• If there are negative societal impacts, the authors could also discuss possible mitigation741

strategies (e.g., gated release of models, providing defenses in addition to attacks,742

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from743

feedback over time, improving the efficiency and accessibility of ML).744

11. Safeguards745

Question: Does the paper describe safeguards that have been put in place for responsible746

release of data or models that have a high risk for misuse (e.g., pretrained language models,747

image generators, or scraped datasets)?748

Answer: [NA]749

Justification:750

Guidelines:751

• The answer NA means that the paper poses no such risks.752

• Released models that have a high risk for misuse or dual-use should be released with753

necessary safeguards to allow for controlled use of the model, for example by requiring754

that users adhere to usage guidelines or restrictions to access the model or implementing755

safety filters.756

• Datasets that have been scraped from the Internet could pose safety risks. The authors757

should describe how they avoided releasing unsafe images.758

• We recognize that providing effective safeguards is challenging, and many papers do759

not require this, but we encourage authors to take this into account and make a best760

faith effort.761

12. Licenses for existing assets762

Question: Are the creators or original owners of assets (e.g., code, data, models), used in763

the paper, properly credited and are the license and terms of use explicitly mentioned and764

properly respected?765

Answer: [Yes]766

Justification: Yes, all sources of data and code are properly credited in the appendix, with767

licenses and terms of use clearly indicated.768

Guidelines:769

• The answer NA means that the paper does not use existing assets.770

• The authors should cite the original paper that produced the code package or dataset.771

• The authors should state which version of the asset is used and, if possible, include a772

URL.773

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.774

• For scraped data from a particular source (e.g., website), the copyright and terms of775

service of that source should be provided.776
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• If assets are released, the license, copyright information, and terms of use in the777

package should be provided. For popular datasets, paperswithcode.com/datasets778

has curated licenses for some datasets. Their licensing guide can help determine the779

license of a dataset.780

• For existing datasets that are re-packaged, both the original license and the license of781

the derived asset (if it has changed) should be provided.782

• If this information is not available online, the authors are encouraged to reach out to783

the asset’s creators.784

13. New Assets785

Question: Are new assets introduced in the paper well documented and is the documentation786

provided alongside the assets?787

Answer: [NA]788

Justification:789

Guidelines:790

• The answer NA means that the paper does not release new assets.791

• Researchers should communicate the details of the dataset/code/model as part of their792

submissions via structured templates. This includes details about training, license,793

limitations, etc.794

• The paper should discuss whether and how consent was obtained from people whose795

asset is used.796

• At submission time, remember to anonymize your assets (if applicable). You can either797

create an anonymized URL or include an anonymized zip file.798

14. Crowdsourcing and Research with Human Subjects799

Question: For crowdsourcing experiments and research with human subjects, does the paper800

include the full text of instructions given to participants and screenshots, if applicable, as801

well as details about compensation (if any)?802

Answer:[NA]803

Justification:804

Guidelines:805

• The answer NA means that the paper does not involve crowdsourcing nor research with806

human subjects.807

• Including this information in the supplemental material is fine, but if the main contribu-808

tion of the paper involves human subjects, then as much detail as possible should be809

included in the main paper.810

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,811

or other labor should be paid at least the minimum wage in the country of the data812

collector.813

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human814

Subjects815

Question: Does the paper describe potential risks incurred by study participants, whether816

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)817

approvals (or an equivalent approval/review based on the requirements of your country or818

institution) were obtained?819

Answer: [NA]820

Justification:821

Guidelines:822

• The answer NA means that the paper does not involve crowdsourcing nor research with823

human subjects.824

• Depending on the country in which research is conducted, IRB approval (or equivalent)825

may be required for any human subjects research. If you obtained IRB approval, you826

should clearly state this in the paper.827
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• We recognize that the procedures for this may vary significantly between institutions828

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the829

guidelines for their institution.830

• For initial submissions, do not include any information that would break anonymity (if831

applicable), such as the institution conducting the review.832

24


	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning
	Flow Models 

	Method
	Flow Model based Policy Representation.
	Optimal-Behavior Constrained Policy Search with Flow Models
	A Tractable Surrogate Objective
	A Practical Implementation

	Experiments
	Results and Analysis
	Ablation Studies

	Conclusion
	Proofs in the Main Text
	Proof for Theorem 4.1
	Proof for Theorem 4.2

	Hyperparameters and Experiment Settings
	Hyperparameters
	Baselines
	Environment Details 
	Toy Example Setup

	Limitation and Future Work
	More Experimental Results

