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Abstract

Modern robotic manipulation primarily relies on visual observations in a 2D color space for skill
learning, but suffers from poor generalization. In contrast, humans, living in a 3D world, depend
more on physical properties—such as distance, size, and shape—than on texture when interacting
with objects. Since such 3D geometric information can be acquired from widely available depth
cameras, it appears feasible to endow robots with similar perceptual capabilities. Our pilot study
found that using depth cameras for manipulation is challenging, primarily due to their limited
accuracy and susceptibility to various types of noise. In this work, we propose Camera Depth Models
(CDMs) as a simple plugin on daily-use depth cameras, which take RGB images and raw depth
signals as input and output denoised, accurate metric depth. To achieve this, we develop a neural
data engine that generates high-quality paired data from simulation by modeling a depth camera’s
noise pattern. Our results show that CDMs achieve nearly simulation-level accuracy in depth
prediction, effectively bridging the sim-to-real gap for manipulation tasks. Notably, our experiments
demonstrate, for the first time, that a depth-only policy trained exclusively in simulation generalizes
seamlessly to real robots on two long-horizon tasks, with little to no performance degradation.
Further analysis reveals that sim-to-real success rates are strongly correlated with the quality of
depth perception. We hope our findings will inspire future research in utilizing simulation data
and 3D information in general robot policies. We release the datasets and models for three depth
sensors, along with an easy-to-use guidance at manipulation-as-in-simulation.github.io.
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1 Introduction

Manipulation is a fundamental capability expected of robots, primarily involving skilled interactions with
diverse objects, and thus necessitating visual observations. Recent advances show that robots can perform
various tasks using 2D color images from single or multiple viewpoints [1, 4, 9, 21, 24, 40, 50, 60]. While color
images provide rich semantic information, humans operate in a 3D world and rely on geometric cues—such as
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Figure 1 How the proposed camera depth model (CDMs) makes real-world manipulation as in simulation. The
illustration is made on the RealSense D435 camera with CDM-435. With CDM, the manipulation policy learns from
accurate geometric information, which is aligned between the simulation and the real world.

shape and spatial relationships—to distinguish objects (e.g., bottles versus bowls) and comprehend the skills
required. This reliance on geometry, rather than texture, enables functional inference and precise interaction
with objects.

With the widespread availability of depth cameras, acquiring 3D geometric information appears to be
straightforward, suggesting that robots could be endowed with similar perceptual capabilities [8, 28, 53, 59].
However, their unreliable output, frequent mode failures, and sensitivity to noise pose significant challenges.
Although recent studies have integrated 3D representations into robotic manipulation, performance remains
limited by the poor quality of depth data produced by such devices. Consequently, evaluations are typically
restricted to simulation environments [61, 62|, where clean and accurate depth is available; or rely on
downsampled point clouds [19, 58, 59] to mitigate noise in real-world scenarios. As illustrated in Fig. 1,
real-world depth camera data often contains significant and characteristic noise artifacts, resulting in inaccurate
perception of objects and environments by robots.

To mitigate the fundamental problem of depth perception and bring accurate geometry into robotic manipula-
tion, this paper proposes camera depth models (CDMs), a plug-in solution for depth cameras that enhances
geometric accuracy, as illustrated in Fig. 1. A CDM processes RGB images and noisy depth signals from a
specific depth camera to produce high-quality, denoised metric depth. To train such models, we developed
a multi-camera mount and collected a dataset of RGB-depth pairs from seven cameras across ten depth
modes. Leveraging both this dataset and open-source simulated data, we designed a neural data engine that
models the noise patterns of depth cameras to generate high-quality paired data in simulation. To address
the scale mismatch in synthesized noise, we propose a novel guided filter approach for noise augmentation.
CDMs achieve nearly simulation-level 3D accuracy, effectively bridging the sim-to-real geometry gap from the
real-world perspective.

Our experiments evaluate CDMs in real-world imitation and sim-to-real manipulation tasks. We show that
CDMs enable robot policies to learn generalizable skills from accurate geometric information. Notably, we
demonstrate, for the first time, that a depth-only policy trained entirely in simulation without real-world
fine-tuning can transfer seamlessly to real robots on two long-horizon tasks, with minimal to no performance
degradation. These results highlight the potential of CDMs to leverage simulation and underscore the
importance of accurate geometric data in developing robust, generalizable robot policies.



In a nutshell, the contributions of this paper are mainly threefold:

1. We introduce ByteDepth, a real-world multi-camera depth dataset comprising over 170,000 RGB-depth
pairs from ten distinct configurations captured by seven depth cameras.

2. We proposed and released a family of camera depth models (CDMs), a plug-in solution that enhances
depth perception accuracy for widely used depth cameras.

3. Through CDMs, we demonstrate how the sim-to-real geometry gap can be bridged, highlighting the
critical role of accurate geometric information in robotic manipulation tasks.

2 Related Work

2.1 Metric Depth Prediction

Recent advances in depth-fundamental models, such as the Depth Anything (DA) series [54, 55|, have
substantially improved the estimation of scene geometry and high-resolution relative depths across diverse
open-world images, demonstrating robust generalization. However, most real-world applications require
accurate metric depth rather than relative depth. Simply fine-tuning DA models to predict metric depth [55]
remains constrained by a fixed depth scale and is susceptible to scale ambiguities [18, 56]. Although recent
approaches [44, 46] introduce affine-invariant techniques to train relative models on large-scale datasets and
achieve improved metric depth estimation via post-processing with a prompt depth, the fundamental scale
ambiguity in monocular images, especially for scenes with large depth ranges, remains unresolved. To address
this, many recent approaches choose to incorporate explicit scale cues for predicting metric depths. For
instance, Guizilini et al. [12] and Piccinelli et al. [34] introduce camera intrinsics into the model. Lin et al.
[27] and Wang et al. [47] proposed a more straightforward way that directly integrates scale information by
prompting paradigms, i.e., low-quality depth images or sparse LiDAR signals, into the model’s architecture of
the pre-trained DA model, and finetuned the model on RGBD datasets with handcrafted prompt depth images
on synthesized data. Nevertheless, they are limited in prompt images made with the style of handcrafted rules
and are hard to work well on diverse sensor configurations for dynamic scenes. In addition to these solutions
with a depth prompt, there are some works focused on recovering metric depth (disparity) from stereo RGB
images [49], which provide implicit depth cues through disparity, but they often require careful calibration
and are limited in diversity. Such methods are limited to working on stereo cameras (and with RGB only)
and require the precise camera intrinsics (baseline distance, focal length, and so on) to obtain the depth.

2.2 Manipulation with 3D Representation

Robotic manipulation involves skillfully interacting with objects, which necessitates accurate perception of
their states. Classical planning-based approaches typically depend on a calibrated perception module to
identify the 3D positions of relevant objects, which are then used to plan feasible manipulation paths. For
example, Fang et al. [8] predicts grasp poses based on point clouds captured by a depth camera.

Learning-based methods, on the contrary, focus on modeling autonomous robot policies using neural networks.
Most recent works rely on RGB images, ranging from single-view [4, 5, 21] to multi-view setups [9, 60],
and from single-task policies [4, 60] to multi-task generalist policies [1, 21, 24, 40, 50]. Although these
approaches have achieved impressive progress on various tasks, they often struggle to generalize to various
visual conditions. To better capture the 3D structure of the environment and leverage geometric information,
some recent works have started incorporating 3D representations into robot policies. For example, Ze et al.
[58, 59] and Hua et al. [19] use point clouds to improve policy generalization across objects with similar
shapes but varying textures and backgrounds. However, these methods still require point cloud downsampling,
calibration, and table-top cropping to mitigate noise from depth cameras. Liu et al. [28] segment objects and
trains a depth-only policy for loco-manipulation tasks to address the sim-to-real gap. Zhen et al. [61] train
a 3D-aware robot foundation model that accepts modalities such as depth, point clouds, and 3D bounding
boxes, but their experiments are limited to simulation, where perfect depth is available. Similarly, Zhu et al.
[62] compares different visual representations in the simulation and demonstrates the clear advantages of
explicit 3D representations with perfect 3D perception. Furthermore, some works explore more complex



representations, such as neural radiance fields [26, 53] and dense voxels [38, 57]; however, all of these 3D
representations ultimately depend on transforming the original camera depth into real-world scenarios.

2.3 Visual Sim-to-Real

Sim-to-real transfer requires policies to overcome both the observation gap and the physics gap between
simulated and real-world environments. Physics gaps, such as discrepancies in dynamics or friction, are often
addressed by using domain randomization 33, 41], which trains policies to generalize across a range of physical
parameters that encompass real-world variability. While this method is generally effective for locomotion
tasks in legged robots [22, 52|, manipulation tasks require more precise modeling because they depend heavily
on accurate visual observations of objects, typically provided by RGB and/or depth images. Achieving robust
sim-to-real policy transfer for manipulation tasks using RGB images requires high-fidelity simulation rendering
to minimize the visual gap. Relying solely on simulator-generated images often demands extensive curriculum
and augmentation design to ensure that the learned policy is effectively transferred to the real world [42].
Although advances in simulator rendering technologies [31, 51| can help, recent real-to-sim approaches using
neural rendering techniques demonstrate that reconstructing photorealistic scenes from real-world data can
further reduce the visual gap [13, 25, 29, 35].

In addition to RGB images, some works utilize colorless 3D representations, such as point clouds and depth
images, to reduce visual discrepancies between simulation and reality. For example, He et al. [16] predicts
the ray distances from simulated depth images to learn the reach-avoid value networks; Cheng et al. [3],
Zhuang et al. [63], Zhuang et al. [64], and Lai et al. [23] employ depth images to train quadrupeds for collision
avoidance and high dynamic locomotion; and Liu et al. [28] uses depth images from two camera views for
mobile manipulation tasks on a quadruped robot, which requires object segmentation to further narrow the
sim-to-real gap. These approaches typically add noise and augmentations to simulated depth images and
require post-processing of real-world depth data, such as clipping, hole filling, and temporal filtering, to address
sensor imperfections. Alternatively, Hua et al. [19] uses point clouds as visual input, but still adds noise in
simulation and applies cropping and downsampling in the real world. Besides, Tao et al. [39] introduces a
computation-cost method to simulate the depth with typical noise patterns rendered by a real-world stereo
camera. However, simulating a real-world camera or adding noise in the simulation is a last resort, as it may
deteriorate the rich geometry information and precise manipulation.

3 Camera Depth Models

Existing depth foundation models can estimate proper relative depth without a geometric prior. However, for
real-world manipulation tasks, models must predict absolute metric depth. This requires two key capabilities:
1) identifying semantically meaningful local regions for objects and backgrounds in RGB images, and 2)
assigning accurate metric depths to these regions using coarse depth prompts from camera depth images.
Notably, this task extends beyond simple denoising or depth completion, as raw depth readings from various
depth cameras exhibit diverse working ranges, failure modes, noise patterns, and biases. Fig. 4 provides a
glimpse of the noisy depth images produced by consumer-grade depth cameras.

3.1 Noise from Depth Cameras

We categorize two general types of noise, i.e., the value noise and the hole noise, as depicted in Fig. 2-
left. Intuitively, hole noise manifests as missing data in depth readings, often caused by depth estimation
algorithms (e.g., stereo matching) or environmental factors, such as lighting or material properties. Value
noise encompasses all other inaccuracies, including biases specific to each camera, as well as blur, jitter, and
other distortions. For instance, stereo matching-based cameras often produce holes around object boundaries,
while LiDAR-based cameras struggle with black or highly reflective surfaces. Both types perform poorly
on transparent or mirror-like objects, such as glass. These noise patterns depend on the camera’s intrinsic
parameters and physical installation.

Therefore, develop an effective metric depth model for a specific camera, the model must 1) refine coarse,
low-quality depth prompts from the camera into precise metric depth estimates, while 2) correcting faulty
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Figure 2 Overview of camera depth models. Left: camera depth generation to synthesize the datasets for training
camera depth models, where the value/hole noise models are trained using the collected dataset. (Sec. 3.4) Right: the
camera depth model, which is built on two ViT encoders [7] and fine-tuned from a depth foundation model [55]; the
RGB and depth tokens are fused before being given to a DPT decoder [36]. Such a structure allows the model to
receive sparse depth from sensors for prediction without any pre-processing like hole-filling. (Sec. 3.2)

depth readings by leveraging semantic information from RGB images. Balancing reliance on sensor data with
skepticism of its inaccuracies poses a significant challenge, making a generalizable solution nontrivial. This
motivates the development of camera-specific depth models (CDMs) tailored to individual depth cameras.

3.2 Model Design

We designed our CDMs M for specific depth cameras to take a pair of an RGB image I € R3*#*W and a
depth image D € RE*W from the depth camera, and predict a high-quality metric (absolute) depth image
D € REXW_ The proposed model structure of CDMs is illustrated in Fig. 2-right. In particular, we design a
dual-branch ViT [7] architecture to achieve the above-mentioned capabilities by separately capturing semantic
information from the RGB and the depth images, as well as scale information that is cross-modal but aligned
in feature tokens X:

X! =vit!(1), XP = ViT?(D) , (1)

where X! = {X],--- , X%} and XP = {XP,---, XD} are feature tokens encoded by the RGB branch and
the depth branch, separately.

Subsequently, we fuse these two types of information through a feature token fusion module. Since the token
fusion module primarily serves to augment semantic information with scale information, it is only necessary
to fuse tokens corresponding to the same spatial locations. Based on this, the fusion module only performs
self-attention on corresponding tokens to accomplish bidirectional feature fusion, and results in depth features
X imbued with scale information:

x I. yDN\N

X = ZMHA({[XﬁXi JYiz1) (2)
i

where MHA stands for multi-head attention, and [;] is the concatenation operation. The entire fusion process

occurs across multiple levels of feature tokens, allowing for deeper integration and the ability to incorporate

both global- and local-scale information, especially when the camera depth prompt has large missing regions,

where global-scale information is particularly needed.

Additionally, we concatenate the original RGB feature tokens into the fused feature tokens. These fused
feature tokens, along with the RGB feature tokens, are concatenated to prevent loss of semantic information,
and then passed through a DPT head [36] to produce scale-aware depth estimation results D.

D = DPT([X!; X]) . (3)



Compared with previous works that fuse the prompted depth information simply in the shallow decoding
phase [27, 47], our proposed CDM structure provides a much more informative representation of the depth
feature and its alignment with the RGB feature, and thus is able to perceive the raw depth image directly,
without preprocessing such as hole-filling [27, 47]. Through the simple but representative structure design,
CDM simplifies the inference procedure, provides the metric depth, and works as a simple plugin after the
camera input, thereby fulfilling the three desiderata mentioned in the beginning.

3.3 ByteCambDepth: A Multi-Camera Depth Dataset

To train our CDMs, we will need a dataset that contains triplets, i.e., RGB image I, low-quality depth image
D, and ground-truth depth image D. However, the low-quality depth images, although they have usually
been handcrafted by adding typical noise patterns to ground-truth depth images that are simulated by basic
depth measurement principles, other factors are hard to be accurately modeled in the simulation, for instance,
the camera parameters, the implementation and optimization details in each depth camera hardware and
software are case by case, resulting distinct noise behaviors. On the contrary, we can easily collect low-quality
depth data from real sensors, but it is hard to get perfect depth data. Therefore, naturally, we propose to
learn the noise pattern with neural networks automatically from real-world data, and then synthesize the
noisy low-quality depth image with the learned noise models.

To this end, we collect typical depth patterns and construct
a dataset for various depth cameras that are commonly used
in daily robot experiments. Specifically, our dataset spans
10 depth modes from 7 different depth cameras, including
different stereo and lidar cameras. To achieve highly efficient
data collection, we design a multi-camera mount device to
capture data simultaneously, as illustrated in Fig. 3. Our
datasets contain more than 17,000 images for each camera,
sampled from videos at 5Hz, covering 7 different scenes includ-
ing kitchens, living rooms, markets, bedrooms, bathrooms,
offices, and breakrooms, as shown in Fig. 4.

Camera Mount Device

3.4 Data Synthesis with Noise Models Figure 3 Multi-camera mount device for
capturing the color-depth image pairs from mul-
tiple depth cameras all at once. We mount
seven cameras, including five RealSense cam-

eras (D405, D415, D435, D455, L515), a ZED

We train two noise models on our collected depth dataset
for each camera, which are then used for generating stylized
low-quality depth images on open datasets to train CDMs.

Hole noise model. We treat the hole noise prediction as
a binary-class prediction given the RGB image I, thereby
training the hole noise model Ny as a pretrained DINOv2
backbone [32] with a DPT head [36] to predict the dense mask
(i.e., hole/non-hole) for each pixel on the camera depth image

camera, and an Azure Kinect camera. For the
Zed camera, we record the raw data and replay
it with its 4 modes (performance, ultra, quality,
neural) offline. In practice, we use two comput-
ers to capture all the data due to the USB bus
bandwidth limits.

D. Formally, this corresponds to optimizing the following

objective:
i=H,j=W

g(Nhole(I)) = Z

i=0,5=0

[Yijlogo(zi ;) + (1 —yi ) log(l —o(zi )] , (4)

where x; ; = Nuole(I);,; denotes the 4, j-th pixel on the mask image predicted by the hole noise model Nyole,
yi; = I(D; ; = 0) denotes if the 4, j-th pixel corresponds to a hole, and ¢ is the sigmoid function.

Value noise model. Motivated by the fact the depth foundation models are predicting a clean style depth
image, we regard the value noise prediction as a stylized relative depth prediction problem, thereby turning
to the help of Depth Anything V2 [55] (DAV2) by taking the low-quality depth image as the labels for
prediction. The training objective of the value noise model Ny,jue is simply an L loss of the predicted depth
Diole = Nhole(I) and a normalized ground truth depth D:

{(Nhote) = L1(f(D), Dpote) , (5)
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Figure 4 lllustration of the collected ByteCamDepth datasets, which contains the raw depth data from 7 cameras,
10 modes (including 4 modes of the ZED 2i camera) in 7 different scenes.

where f is the normalization function, in our project we use the affine-invariant transformation proposed in
Wang et al. [45]. To make sure the value noise can learn proper relative scales during the data synthesis stage,
we also fine-tune the DAV2 model on the synthesized dataset before turning it into a value noise model.

Synthesizing camera depth. Having the noise models, we can synthesize the noisy low-quality data on open
synthesized datasets with clean ground truth depth. Denote the hole noise model as H and the value noise
model as V', we cured the synthesized noisy data D given the RGB image I via:

D = u(V(D) * (H(I) < 0.5) , (6)

where p is the affine-invariant unscaling function [45] recovering the metric of the predicted relative value
noise, referring to the metric of the ground truth depth.

3.5 CDM Training

Although we can synthesize training data for specific cameras, and these two types of noise models can learn
similar noise patterns compared to the raw depth obtained from the real depth camera, we observed several
problems, especially with the value noise models.

Guided filter for value noise. The most significant one is that the value noise model is hard to maintain
the correct metric scale on the synthesized datasets, after being fine-tuned on the ByteCamDepth dataset.
This results in large metric gaps between the synthesized camera depth and the ground truth depth, and
further leads the trained CDM to overlook the metric information contained in the camera depth prompt.
We propose to employ the guided filter [15]. The guided filter assumes the output image B is a local linear
transformation of the guided image G:

bi = xkgi + Yk (7)

where b;, g; are the i-th pixel of B and G, respectively; zy, yr are the scale and shift parameters in the kernel
window, which is obtained through optimizing the minimize the error of the transformation between the input



image A and the output image B:

Z (zrgi + yr — ai)® +ex}) (8)

1EW;

where € is a regularization term. Note that in our case, the guided filter takes the value noise as the guided
image G and the ground-truth depth as the input image to be filtered A, so that the resulting image B can
keep the geometry/structure of the value noise but maintain the roughly correct metric scale in the whole
image. As the kernel size k grows, the output image keeps much more structure of the noise and less metric
related to the ground truth depth. Therefore, we use a randomized kernel size k (from small to large) and
take the guided filter as an augmentation strategy of the value noise before adding hole noise, which helps
to get the best results. Besides, both noise models barely learn the pattern of high-frequency noises, due to
the nature of the neural network and our DAV2-like training strategy, so we randomly add such noises by
handcrafted rules as an augmentation strategy.

Training loss. Referring to Lin et al. [27], we use the L loss combined with the gradient loss for better edge
depth to train our CDMs M, given image I and its raw depth D:

(M) = Ly (D, D) + £gr0a(D, D) , (9)

lgrad(D, D) = (|AB=R)| 4 | 25Dy (10)
During our training, we use disparity as the training target. The weights of the ViT encoder in the RGB and
the depth branch are both initialized from DINO-v2 [32], and the decoder is trained from scratch. For the
single-channel depth images, by default, they are copied three times before being fed into the network. We
synthesized our training data on four simulated datasets: HyperSim [37], DREDS [6], HISS [48], and IRS [43],
in a total of 280,000+ images.

4 Sim-to-Real Manipulation through CDMs

Our camera depth models (CDMs) allow us to obtain a ‘simulation-like’ depth image in the real world,
which provides accurate geometry information. Therefore, simulation data can be fully utilized to learn a
manipulation policy, which can be seamlessly transferred to the real world. To evaluate the power of CDM
and its benefits to robot manipulation, we develop a geometry-based sim-to-real pipeline that contains four
main stages: scene construction, camera alignment, simulated data collection, and imitation learning. After,
we directly deploy the trained policy onto real-world robots, with the corresponding CDM as an inference
plug-in. In particular, we choose depth instead of pointclouds as the observation for the following reasons: 1)
human relies on single-view stereo visual observations and can do many things; 2) pointclouds fused from
multi-view cameras require careful camera calibrations and are more sensitive to irrelevant backgrounds.

Scene construction. Since we rely on depth-only visual transfer, without any color information, the geometry-
based sim-to-real pipeline does not require rigorous alignment of the exact appearance between objects and
backgrounds in the simulation and the real world. Instead, we introduce geometrically similar objects and
construct simple geometry as the background in the simulation. After building the environment, we set up the
camera to obtain visual observations. We note that manipulation also requires a reasonable approximation of
interactions between robots and objects, yet this is beyond the focus of this project. Thereafter, we manually
assign the physical attributes of objects and modify the open-source robot description files to ensure plausible
interactions, without aiming for absolute physical accuracy.

Camera alignment. To align the camera pose between the simulation and the real scene, we adopt a
differentiable-rendering-based camera calibration method [2] to estimate the camera extrinsics in the real
scene with minimal human effort, which only requires a few corresponding masks of the robot arm between
real and virtual scenes. However, the calibrated poses are hard to perfectly align due to the differences in
camera models between simulation and real-world sensors. To mitigate the gap from such misalignment, we
slightly randomize camera poses during data collection in simulation, which helps the policy be robust to
small discrepancies in viewpoint and better work in real-world deployments.



Data generation. To generate demonstrations efficiently in simulation, we develop an extension of Mim-
icGen [30], with whole-body control (WBC) [14] to generate smoother, high-quality demonstrations. Our
method introduces several data generation features like random reset to generate retrying demonstrations,
controllable velocity for fine-adjustment, and so on. With WBC, the algorithm can be further extended to
wheeled robots for mobile manipulation tasks. Details of the algorithm can be further referred to Appendix G.

Imitation learning with depth. We adopt a policy structure similar to the one used in Hua et al. [19]
and Lin et al. [27]. Although some previous works have shown some robustness using a point cloud based
policy [19, 58, 59], their point clouds are also transformed from the depth image captured by the depth
camera and requires cropping and downsampling to alliviate noises. Since now we can obtain an accurate
depth where the geometry information is complete, we choose to use depth image directly as the input to our
policy. The policy encodes the depth image with a pre-trained ResNet, where the first layer of the network is
replaced with a 1-channel convolutional layer; the proprioceptive states are encoded by a from-scratch MLP;
a diffusion head [4, 17] is adopted to predict the action sequence. We directly use the one-step single-view
depth image rendered in simulation for training the policy, without adding any noise, but with only the
RandomShiftScaleRotate augmentation to alleviate the camera calibration biases. Besides the depth image,
the observation space also includes the joint position and the gripper status. In real-world deployment, we
make our CDM a plugin between the camera and the policy, which predicts a clean depth image based on the
raw depth image and the RGB image from the depth camera. The predicted depth image is then used for
real-time policy inference.

5 Experiments

The experiments involved are mainly threefold.
e Does the camera depth model achieve better performance given specific types of low-quality depth?
e How does the accurate geometry information benefit real-world robot manipulation?

e How the “sim-like” geometry contribute to zero-shot sim-to-real robotics manipulation?

5.1 Depth Performance

We mainly evaluate the trained camera depth models (CDMs) on the Hammer dataset [20], a real-world
dataset that contains warped depth data paired with RGB images collected by three depth sensors: the
RealSense D435 (stereo depth based on active structure light and IR images), L515 (a D-Tof camera), and a
Lucid Helios (an I-Tof camera). Note that the dataset is not used for training, showing a zero-shot performance.
We compared our CDMs against two baseline methods, PromptDA [27] and PriorDA [47], both of which are
metric depth prediction methods using prompt depth images and require hole-filling preprocessing during
inference time. Since our CDM directly takes a prompt depth image as it is, we test two cases, i.e., Filled and
Holed, denoting whether the low-quality depth is filled or directly given to the model for prediction. We also
compared PromptDA fine-tuned on our synthesized dataset to show the advantage of the structure design.

The results are shown in Tab. 1, where we can observe and conclude several things. 1) Both PromptDA and
PriorDA failed to obtain good depth prediction without hole-filling preprocessing, which requires additional
computation time in real-time robot experiments. 2) Even with hole-filling, our CDMs achieve the state-of-
the-art performance on corresponding data splits. 3) With the same training data and augmentation strategy,
our CDMs still perform better than PromptDA, showing the advantage of our designed structure. 4) The
model trained on specific synthesized camera noise data should work better on the same camera data split,
like PromptDA; however, to our surprise, the CDM-L515 generalized well to the 435 datasets and can even
achieve slightly better results than the CDM-D435 model, indicating the test cases of the D435 camera in the
Hammer dataset can be generalized by the CDM-L515. 5) Both CDMs have better zero-shot generalization
ability on the data split with a different depth sensor (the I-Tof Lucid Helios camera), potentially because
CDMs solve some common noise problems among depth cameras.



Split Filled / Holed / | L1 RMSE| AbsRell do5 7T o1 T

Ours (CDM-D435) | 0.0258  0.0404 0.0312 0.9842  0.9951
Ours (CDM-L515) 0.0182 0.0338 0.0217 0.9877  0.9956
PromptDA*(435) | 0.0434  0.0666 0.0599 0.9459  0.9770
PromptDA*(515) | 0.1830  0.2387 0.2750 0.8802  0.9186

.
(IRDSZL‘G?;eo) PromptDA 0.1703  0.2971 0.2437  0.6704 0.7229
PriorDA 1.2031  0.6856 1.2030 0.0837  0.1717

PromptDA 0.0396  0.0691 0.0484  0.9503 0.9772

PriorDA 0.0388  0.0754 0.0461 0.9632  0.9880

Raw Depth 0.0550  0.1458 0.0708 0.9179  0.95429
Ours (CDM-L515) | 0.0156 0.0297 0.0229 0.9754  0.9919
Ours (CDM-D435) | 0.0165  0.0349 0.0246 0.9613  0.9855
PromptDA*(515) | 0.0235  0.0666 0.0349 0.9291  0.9730
PromptDA*(435) | 0.0254  0.0438 0.0379 0.9234  0.9640

(];J_E’Tlé’f) PromptDA 0.0483  0.0400  0.0612  0.8867  0.9259
By 05412 0.6134 09211  0.0850 0.1794
PromptDA | 0.0207 0.0515  0.0304  0.9480 0.9699

B DA 0.0177 00385  0.0274  0.9502 0.9763

Raw Depth | 0.0312  0.0813  0.0475  0.9098  0.9429

Ours (CDM-L515) | 0.0268 0.0403 00334 09468 09871

Helios Ours (CDM-D435) 0.0272 0.0457 0.0372 0.9297 0.9806
LTof PromptDA | 0.0207  0.0515  0.0304  0.9480 0.9699
PriorDA 0.0324  0.0597  0.0461  0.8984 0.9638

Raw Depth 0.0312  0.0813 0.0475 0.9098  0.9429

Table1 Quantitative comparisons of metric depths prediction on Hammer [20] dataset (zero-shot evaluation).
The terms Filled. and Holed. refer to whether the low-quality depth is filled or directly given to the model for
prediction. *(split) denotes fine-tuning on our synthesized datasets with the same augmentation strategy. Raw depth
refers to the metric of directly using a low-quality depth image without a model. CDMs are named as the camera type,
which are trained on the corresponding synthesized noise of that camera. All results are computed directly from the
output of these models, without any alignment postprocessing.

12.5cm 13.5cm 15.0cm 11.ﬁm 19.0cm
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| Toothpaste-and-Cup | stack-Bowls T ; 0.73 ! !
Depth o - H |

Model Pick Put Toothpaste | Pick Stack @ 05 Pick Bowl | 0.47
Toothpaste into Cup Bowl Bowl g™ EEm Stack Bowl { 033 033 0.33
None 0/15 0/15 6/15 3/15 3 020
CDM-D435 10/15 6115 115 9115 " 0.0

Extra Small Small Medium (Train) Large Extra Large

Table 2 Depth-only imitation results w/w.o Figure 5 Generalization over different sizes of objects. The policy
CDMs, each task with 50 demonstrations. trained without CDM cannot generalize to unseen sizes.

5.2 Depth-Only Imitation Learning

We aim to investigate how the accurate geometry information produced by the camera depth models benefits
robot manipulation tasks. To this end, we design a pilot study that contains two pick-and-place tasks on
a daily-use depth camera, RealSense D435. The Toothpaste-and-Cup task requires the robot to pick the
toothpaste into the cup, and the Stack-Bowls task requires the robot to stack two bowls. We manually collect
50 trajectories by teleoperation for each task, and conduct the test on five different positions, each with three
trials. In particular, for the Stack-Bowls task, we trained our policy on a normal-sized bowl and tested on
bowls of five different sizes, including four unseen sizes. Since we do not involve color information in the
policy, the policy naturally generalizes to various colors, so we ignore the difference in texture. The results
are shown in Tab. 2 and Fig. 5. We can easily observe that, learning and inference with the high-quality
depth data produced by the CDM highly improve the policy’s ability to achieve tasks. And it is worth noting
that with the accurate geometry information, the policy can generalize to bowls of different sizes, which is
nontrivial for the policy trained without CDM.
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Figure 6 UR-5 manipulation experiment setup. (a)(d) The overall setup for simulation and the real-world
experiments, where we test two different cameras (D435 and L515) and train single-view policies for both cameras.
In simulation, we add small randomization to the camera pose when generating demonstrations. (c)(e)The training
environments of the kitchen and the canteen tasks in the simulation, where the dotted frame and the arrow denote the
randomization range of objects. (d)(f) The test distributions of the two tasks, where we compose the position of the
bowls and microwaves, follow the randomization boundaries in the simulation.

5.3 Zero-Shot Sim-to-Real Manipulation

Robot and task setup. We construct our sim-to-real pipeline using a tabletop URb robot equipped with a
Robotiq gripper, as illustrated in Fig. 6b. As mentioned before, the visual observation of the policy is the
depth image from a single third-view camera. We design two long-horizon manipulation tasks: the kitchen
task and the canteen task. 1) The kitchen task tests the ability to utilize articulation objects: the robot is
required to pick up a bowl on the table, put it into the microwave, and then close the door of the microwave.
Note that the microwave door is glass, which is seen as a hole from the original camera depth, and poses an
additional challenge for depth capturing. 2) The canteen task requires recognizing and accurately grasping a
slim fork and a thin plate, which are rather noisy, and the fork is even unseen from the original camera depth:
the robot should pick up the fork and put it into the box in front of it, then pick up the plate and dump the
trash into the left box, at last place the plate into the front box. We collect ~ 680 demo trajectories for the
kitchen task and ~ 800 for the canteen task in simulation, train a policy by imitation learning, and directly
deploy the policy in the real world by plugging in a depth model. The test setup is illustrated in Fig. 6d and
Fig. 6f, where we test 10 positions and each for 3 times, resulting in 30 tests in total for both tasks. In the real
world, we test two cameras: one is the RealSense D435 (IR Stereo) camera, and the RealSense L515 (D-Tof
lidar) camera. For both cameras, we gather their intrinsics and calibrate the extrinsics using the method as
mentioned in Section 4.

Results. The zero-shot sim-to-real results are collected in Tab. 3, where we compare the policy performances
using our CDMs against the same policy using two state-of-the-art prompt-based depth models, and directly
using the raw depth image. We have several interesting observations: 1) The CDM works better under their
specific camera type, although in the previous section, the CDMs showed generalization under the depth
metric on a static dataset. 2) CDMs work better than previous baselines, even on different camera types,
showing the advantage of the training dataset and the structure design. 3) The real-world policy performance
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Table 3 Zero-shot sim-real results using CDMs as the plugin in a real-world robot pipeline.

| | Kitchen Task | Canteen Task
Camera Depth Model Pick  Put Bowl into Close Total Pick Place Pick Dump Place Total
Bowl Microwave Microwave ote Fork  Fork Plate Plate Plate ot
Sim (D435-View) | None | 43/50 33/50 32/50 | 30/50 | 40/50 28/50 47/50 45/50 33/50 | 21/50
None 0/30 0/30 0/30 0/30 | 0/30 0/30 0/30 0/30  0/30 | 0/30
D435 PromptDA | 11/30 5/30 0/30 0/30 | 17/30 16/30 7/30  2/30  6/30 | 1/30
’ PriorDA | 16/30 8/30 7/30 7/30 | 30/30 30/30 1/30 0/30 0/30 | 0/30
CDM-D435 | 29/30 26130 26130 26/30 | 30/30 30/30 15/30 14/30 1430 | 14/30
CDM-L515 | 29130 22/30 16/30 14/30 | 30/30 29/30 0/30 0/30  0/30 | 0/30
Sim (L515-View) | None | 43/50 34/50 37/50 | 32/50 | 40/50 26/50 46/50 43/50 31/50 | 20/50
None 0/30 0/30 0/30 0/30 | 0/30 0/30 0/30 0/30 0/30 | 0/30
Lsls PromptDA | 3/30 0/30 0/30 0/30 | 3/30 0/30 3/30 0/30  0/30 | 0/30
PriorDA | 17/30 3/30 2/30 2/30 | 10/30 8/30 3/30  3/30  3/30 | 3/30
CDM-D435 | 22/30 11/30 9/30 9/30 | 13/30 11/30 11/30 10/30 9/30 | 9/30
CDM-L515 | 25130 18/30 18/30 18/30 | 24/30 24/30 22/30 22/30 22/30 | 22/30

matches the simulation performance, and some is even higher. The reason may be that the randomized
position in the simulation is bigger, and some of them are difficult to complete all tasks.

Total latency. We also compare the total latency of using Table 4 Total latency of depth models on a
different depth models as the policy plugins, including the single 4090 GPU with a RealSense D435 providing
pre-processing, model inference (in a precision of Float32), the prompt depth, including the pre-processing,
and post-processing time. The results collected from a sin- ~ model inference (Float32), and post-processing time.
gle 4090 GPU server are in Tab. 4, showing that without

any further engineering optimization and quantization, Depth Model | Total Latency (s)

CDMs provide a slow latency, allowing the policy to be PriorDA 0.154+0.005

run at >6Hz. Additional optimizations, quantization, PromptDA 0.188+0.005

and other enhancements could further decrease inference CDMs 0.151+0.002

times.

6 Conclusion and Future Works

This work introduces camera depth models (CDMs), designed to provide high-quality geometric information
by enhancing depth perception for specific depth cameras. By delivering accurate depth predictions, CDMs
enable robust robotic manipulation in real-world settings with simulation-like precision, effectively bridging
the sim-to-real geometry gap. Integrating CDMs with real-world depth cameras, we successfully transferred
depth-only visuomotor policies, trained solely in simulation, to real robots on long-horizon manipulation tasks,
achieving high success rates. These results underscore the critical role of accurate geometric information,
provided by CDMs, in enabling generalizable and effective robotic manipulation. While this study demonstrates
CDMs in a depth-only sim-to-real pipeline, their potential extends far beyond this application. Future work
could consider leveraging CDMs to relabel RGB-D data, enhancing policies with robust 3D representations.
Moreover, by achieving simulation-level 3D perception in the real world and aligning sim-real geometry gaps,
CDMs enable seamless integration of simulation and real-world 3D data. This approach could lead to more
efficient data utilization strategies, fostering the development of large-scale robotic foundation models with
human-level generalization ability for complex manipulation tasks.
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Figure 7 Depth predictions visualization of extended camera depth models, including CDM-D435 on RealSense
D415, D435 and D455 captures, along with CDM-D405, CDM-L515, CDM-Kinect, and CDM-Zed?2i (Neural) on their
corresponding camera captures.

B Extended Camera Depth Models

Except for the two daily-used camera depth models (CDMs) used in the robot manipulation experiments, i.e.,
RealSense D435 and RealSense L515, we further train three CDMs for RealSense D405, Azure Kinect and
Zed2i (Neural Mode). Since we do not have the corresponding real-world dataset with the ground-truth depth
label to quantitatively evaluate them, we simply visualize their predictions on representative scenes from the
ByteDepth dataset, shown in Fig. 7. Since RealSense D435 uses a similar depth technology to RealSense D415
and RealSense D455, they share a similar noise mode, so we visualize CDM-D435 predictions upon these two
cameras and find that CDM-D435 can also provide good predictions. We open all model weights to allow the
community to further test and improve them.
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C Depth Accuracy w.r.t Distance

Before leaving the factory and being sold to customers, a depth camera will be evaluated at various distances
to fully examine its desired working range. To understand the work range of CDMs and as a reference to help
people use them, we also provide the depth accuracy w.r.t the distance of CDMs (CDM-D435 and CDM-L515)
on the Hammer dataset, in terms of absolute and relative error and the L1 error, shown in Fig. 8. From
the accuracy curves, we observe that the raw depth has a larger error than the camera producer claims, for
example, the RealSense D435 should have a less than 2% error rate when working under 1~2 meters, which
may be the bias of the dataset. Upon this dataset, CDMs can achieve a high accuracy, whose trend follows
the accuracy of the original prompted depth.
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Figure 8 Depth accuracy evaluation of CDMs and other models on the Hammer dataset.

20



D Depth Comparison

We provide a detailed visual comparison between the raw camera depth and the predicted depth by the
proposed CDMs, shown in Fig. 9. We can easily observe that both of these two representative depth cameras
have their typical noise and failure modes. For example, both cameras fail to recognize the glass of the
microwave and the metal fork; D435 has noisy depth on the plaid tablecloth; 1515 has problems with the
reflective outside part of the microwave, and the gripper fingers. In comparison, CDMs can provide accurate
and complete geometry information.

(a) RGB image from D435, (d) RGB image from L515, (g) RGB image from D435, (j) RGB image from L515,
Kitchen. Kitchen. Canteen. Canteen.

= D o
FEraae aEE "

(b) Raw depth from D435, (e) Raw depth from L515, (h) Raw depth from D435, (k) Raw depth from L515,
Kitchen. Kitchen. Canteen. Canteen.

(c) Depth by CDM-D435, (f) Depth by CDM-L515, (i) Depth by CDM-D435, () Depth by CDM-L515,
Kitchen. Kitchen. Canteen. Canteen.

Figure 9 Detailed real-world cases of two representative depth cameras, RealSense D435 (active IR stereo
camera) and RealSense L515 (lidar camera), including color images (first row), camera depth images (second row), and
depth predicted by camera depth models proposed in this project (third row).
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E Rendered Point Cloud Comparison

We further compared the rendered point clouds transformed from the raw camera depth and the ones predicted
by the camera depth models (CDMs), shown in Fig. 10 and Fig. 11. From the rendering results, we can easily
observe that the point clouds rendered by the raw depth camera are much noisier, where the objects are
distorted and convey wrong geometry information. In comparison, the CDM provides a clean point cloud
where the objects maintain most of their original geometry. It is worth noting that in the Canteen task, the
geometry of the fork from the raw camera depth is integrated within the plate; the one predicted by the CDM
is better, but still inaccurate. This is because the raw camera depth does not provide any useful information
about the fork, and the model has to predict the whole from the semantic information of the color image,
which may be confusing.
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Rendered from the raw camera depth

(a) Point cloud comparison of the Kitchen task.

Rendered from the raw camera depth

(b) Point cloud comparison of the Canteen task.

Figure 10 Rendered point cloud comparison between the raw camera depth and the predicted depth of CDM-D435,
upon the RealSense D435 camera.
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Rendered from the raw camera depth

(a) Point cloud comparison of the Kitchen task.

Rendered from the raw camera depth

(b) Point cloud comparison of the Canteen task.

Figure 11 Rendered point cloud comparison between the raw camera depth and the predicted depth of CDM-515,
upon the RealSense L515 camera.
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Figure 12 Sim-Real rollouts comparison on two tasks in the sim-to-real experiments, including two views (D435
view and L515 view). For the simulation, we show the rendered RGB and depth images; as for the real experiments,
we visualize the RGB images and the depth images from the depth camera, with the predicted depth from the
corresponding camera depth model.

F Comparison of Sim-Real Rollouts

We visualize the policy rollouts on two tasks in the sim-to-real experiments in Fig. 12, where we compare the
key frames from the simulation and the real world separately. It is readily apparent that the camera depth
model provides high-quality, simulation-like depth, offering accurate geometry information in the real world
and thus bridging the geometry gap between simulation and reality.
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G Data Generation with WBCMimicGen
G.1 Algorithm

To generate demonstrations efficiently in simulation, inspired by Haviland et al. [14], we propose WBCMimic-
Gen, which extends with whole-body control (WBC). Compared to the original MimicGen algorithm, which
utilizes inverse kinematics (IK) to solve given target end-effector poses, WBCMimicGen optimizes target
joint velocities with WBC, thereby generating smoother, high-quality demonstrations. This approach can be
further extended to wheeled robots for mobile manipulation tasks. Utilizing classical control methods, such as
WBC, in the simulation preserves the advantage of precise perception, without considering any error, as we
can easily acquire privileged information about objects, scenes, and robots.

Specifically, we regard the data generation problem as solving a trajectory of whole-body joint velocities that
enables the end-effector to move with a specific velocity. Formally, denote joint velocities as @, this problem
can be modeled as a quadratic programming (QP) problem [14]:

mwin folx) = %xTQa) +CTx (11)

subject to Jx = v, ,
Az < B,
X~ <zx<xt,
where = = (apase; Gactives 01, 02, - - ,0;) and X~ is the limits; apase is the velocities of the robot base; Gactive
is the velocity of the joints related to the end-effectors in the QP (so called the active joints); d; are slack

variables that can help construct a solvable QP. Without loss of generality, suppose there are k end-effectors
and n joints, these variables can be expressed as:

Q = diag(Ag, As,, -+ 5 Ag, ) € ROTOR)
- ( I +e ) e R(6R)
O6k><1
A= (1n><(n+6k)) e Rnx(n-l—ﬁk) ,
Op

PO—Ps

U
B = p,p e R™.

(12)

Pn—Ps

N Pi—Ps

Here J,, is the manipulability Jacobian, € is the base to end-effector angle, and p is the distance to the nearest
joint limit, encouraging the joint not to stay too close to the limit.

G.2 Comparison Results

To evaluate the data quality generated by WBCMimicGen, we compare the trajectory smoothness, measured
by the mean absolute acceleration and the root mean square (RMS) jerk (i.e., the averaged rate of acceleration
change) metrics against the data generated by the original MimicGen [30] algorithm. Previous works Gasparetto
and Zanotto [10, 11] use metrics like these as objectives for better smoothness. As shown in Tab. 5,
WBCMimicGen consistently generates smoother trajectories with significantly lower acceleration and jerk
values across all joints. This improvement stems from the quadratic programming formulation of WBC, which
incorporates velocity regularization and enforces joint velocity limits. We encourage readers to further visit
the project page for a direct visual comparison of the generated trajectories.

Simulation experiments further validate these improvements. As detailed in Tab. 7?7, models trained on
WBCMimicGen data achieve higher success rates (72% vs 56% for Kitchen, 42% vs 24% for Canteen) while
maintaining substantially lower RMS jerk and acceleration. The baseline approach exhibits much larger
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Table 5 Comparison of the generated demonstrations over every robot joint (UR5).

Task | Method | Joint1 Joint2 Joint3  Joint4  Joint5  Joint6
Mean absolute acceleration (rad/s?) |
Kitch MimicGen 1.284 1.253 0.910 8.115 4.457 6.702
WENCH | WBCMimicGen | 0183 0495 03N 4.925 2.810 6.539
Canteen MimicGen 1.180 1.792 1.310 6.487 2.961 1.177
WBCMimicGen 0.028 0.064 0.080 2.200 0.433 0.709
| | RMS jerk (rad/s®) |
Kitchen MimicGen 461.374 313.714 277.185 1047.850 852.199 1252.070
WBCMimicGen 58.774 112.983 84.063 767.230 516.074 1020.545
Cantee MimicGen 435.487 384.092 425.695 1004.206 592.221 282.824
MECN | WBCMimicGen | 8610  19.879 25812  547.281  111.007  207.548

acceleration at action chunk boundaries, which increases the likelihood of dropping objects. In contrast,
WBCMimicGen’s smoother trajectories enhance both task reliability and safety, making them more suitable
for real-world deployment.

w MimicGen

1.0, ™= WBCMimicGen
3000 5688 "i‘: 103 1040.6
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] r"l‘h -
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(a) Kitchen Task
 MimicGen
1.0, ™= WBCMimicGen 1511 239.1
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(b) Canteen Task

Figure 13 Performance comparison between policy models trained on demonstrations generated by MimicGen and our
WBCMimicGen, on (a) Kitchen Task and (b) Canteen Task. The policy learned from WBCMimicGen reflects a higher
success rate while keeping smooth on the rollout policy trajectory (lower RMS jerk and acceleration indicate).



Figure 14 A typical failure case of CDM-515, caused by the wrong prompt and the less informative semantic
information contained in the RGB image.

H Limitations and Failure Cases

Although CDMs can fix many errors of the source depth cameras due to the semantic information in the RGB
image, they may still fall into some failure cases when the monocular semantic information is not enough to
fix the error. In other words, when the prompted camera depth image has wrong metrics for a large region,
the predicted depth can be misled. Here we provide a typical case on CDM-515 in Fig. 14, where the red
dashed line highlights the area where the prompted camera depth hints that it is a hole. This is due to the
metal plane causes the failure perception for the RealSense L515 is a LIDAR depth camera. Additionally, the
RGB image does not bring informative semantic information for the CDM to fix that error.
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